# 2017 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

December 2017



| Local Authority<br>Officer | Ian Nadin / Jim Candlin                                   |
|----------------------------|-----------------------------------------------------------|
| Department                 | Environmental Protection<br>Regulatory Services           |
| Address                    | Wyvern House, The Drumber, Winsford, Cheshire<br>CW7 1AH  |
| Telephone                  | 0300 1237038                                              |
| Email                      | EnvironmentalProtection@cheshirewestandchester.<br>gov.uk |
| Report Reference<br>number | EP/LAQM/ASR17                                             |
| Date                       | December 2017                                             |

## Executive summary: air quality in our area Air quality in Cheshire West and Chester

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people, and those with heart and lung conditions. There is also often a strong correlation with equalities issues, because areas with poor air quality are also often the less affluent areas<sup>1,2</sup>. The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around £16 billion<sup>3</sup>.

In Cheshire West and Chester the pollutants of concern are nitrogen dioxide (NO<sub>2</sub>), particulate matter and sulphur dioxide (SO<sub>2</sub>). National government has set healthbased objectives for a range of pollutants and, where these are not met, the local authority must declare an air quality management area (AQMA) and commit to improving air quality through action planning.

This annual status report (ASR) summarises monitoring results for 2016 and action that the Council has taken in a bid to improve local air quality since the 2016 ASR.

To date, the Council has declared four AQMAs: three in response to exceedances of the annual mean objective for  $NO_2$  due to road traffic emissions and one for exceedances of the 15-minute objective for  $SO_2$  the cause of which is industrial emissions.

The Council recently declared the Chester city centre AQMA, which covers a much larger geographic area than the now revoked Boughton AQMA. Since the last annual status report was published we have developed the air quality action plans (AQAP) for Fluin Lane, Frodsham and Thornton-le-Moors.

Work has also progressed on preparation of the borough-wide low emissions strategy, which is currently out for both internal and external consultation.

i

<sup>&</sup>lt;sup>1</sup> Environmental equity, air quality, socioeconomic status and respiratory health, 2010

<sup>&</sup>lt;sup>2</sup> Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

<sup>&</sup>lt;sup>3</sup> Defra. Abatement cost guidance for valuing changes in air quality, May 2013

## Actions to improve air quality

The authority has pursued a number of measures with the aim of delivering air quality improvements in the reporting year of 2016 - 2017.

There has been significant progress with the production of the Council's low emissions strategy (LES). The LES aims to promote: the uptake of ultra-low emission vehicles; sustainable transport; an air quality neutral approach to new development; measures to prohibit poor practice and the dissemination of information to raise awareness of air quality issues. Through 2016 and 2017 both the detailed background document and the main strategy were developed through extensive inter-departmental working and the draft strategy was considered by the Council's Places Scrutiny Committee. The consultative draft of the LES has now been published with a view to adopting the strategy in early 2018.

The first draft of the AQAP for Frodsham was produced in November 2016. This was progressively refined and updated over time and a series of public engagement events was held in the summer of 2017. The final action plan is scheduled to be published in January 2018.

Following declaration of the AQMA for Thornton-le-Moors in September 2016, a draft AQAP has been developed. The source of emissions causing exceedances of the national objective, in contrast to other AQMAs in the borough, is the large oil refinery to the north of the village. As this is a process that is regulated by the Environment Agency, the AQAP has been developed by the Council in conjunction with the Environment Agency and the site operator, Essar. Supplementing the modelling study performed by environmental consultants, Cerc, which determined the geographical extent of the AQMA, a further study commissioned by Essar helped define the likely scale of emission reductions required in order to meet the objectives.

An AQMA for Chester city centre was declared in May 2017 following a review of monitoring and detailed modelling study in 2016 and 2017. The AQMA encompasses the whole of the inner ring road as well as sections of major roads feeding into it. The former Boughton AQMA has now been revoked although the area does form part of the new AQMA.

A supplementary planning document on parking standards, which was adopted by the Council in May 2017, has as a stated aim to address traffic congestion and poor

ii

air quality through the appropriate control of the amount and design of car parking. Amongst the guidelines for parking provision in new developments are recommended minimum specifications for electric vehicle charging infrastructure. Also, the Borough's parking strategy for on-street parking and Council-run car parks includes the ambition to reduce parking charges for low emission vehicles in Chester.

The Council's park and ride contract with the operator Stagecoach was renewed in 2016. All buses utilised on the service are compliant with Euro VI standards, which is an improvement in terms of emissions over the previous Euro IV vehicles. A low emission bus scheme (LEBS) bid for fully electric buses on the park and ride was resubmitted to the office for low emission vehicles (OLEV) in early 2017. The bid was unfortunately unsuccessful.

In early 2016 two Euro II / III buses, which have been upgraded to a Euro VI standard equivalent, came into service. The retrofitted equipment was funded through the clean vehicle technology fund (CVTF). Remaining funds will be utilised for further retrofits in 2018.

The Council submitted a joint (with Cheshire East) bid for air quality grant funding for an Eco stars fleet recognition scheme. Eco stars aims to improve operators' fuel efficiency, reduce emissions and deliver financial savings for participants. Although commended for the monitoring, evaluation and knowledge transfer aspects, unfortunately, the bid was unsuccessful and placed on the reserve list.

Under a four-year programme from late 2016, 20mph zones are being introduced across the borough. While the main driver for the speed restrictions is road safety, studies show that 20 mph speed restrictions are beneficial in reducing oxides of nitrogen (NOx) from diesel engines and particulate matter for both diesel and petrol engines. They are also effective in reducing particulate matter due to fewer acceleration / deceleration events.

There is broad consensus amongst Council members that action needs to be taken to improve local air quality. In December 2016 the Council passed a notice of motion which states that "This Council recognises that traffic-related air pollution is a significant risk to the public's health and wellbeing, contributing to health inequalities in our borough as detailed in the council plan."

iii

"Therefore, this Council reaffirms its commitment to improving air quality and resolves to review current practice including emerging NICE<sup>4</sup> guidelines to ensure council policies and strategies in planning, infrastructure, transport and public health reflect this advice in relation to external air quality."

"Council also confirms its commitment to the recommendations of the Health and Wellbeing Board of July 2015 regarding the impact on health from air pollution."

Note: NICE guidelines include recommendations such as including air pollution matters in strategic planning; provision of electric vehicle charging points; procurement of public sector low emission vehicles; introduction of 20mph zones and specifying emissions standards for licensed vehicles. The Health and Wellbeing Board report recognised the need to consider health impacts of air pollution through Council policies and endorsed the development of the low emissions strategy.

## Local priorities and challenges

The Council has a number of local air quality management obligations to fulfil in the immediate future.

Once the consultation phase of the LES is completed in January 2018, the LES needs to be finalised and adopted, which will assist with the challenge of securing corporate sign-up to the shared goals of improving local air quality and associated health outcomes in the borough. Measures included in the LES will need to be prioritised for implementation through a strategic plan of action.

A significant piece of work for the coming months will be the development of an AQAP for the Chester city centre AQMA, which covers several major roads including the inner ring road. Although measures contained in the LES will greatly assist in delivery of air quality improvements within the AQMA, there is a need to produce a range of measures focused on the AQMA itself in order to work towards compliance of the objectives in the shortest possible time.

The AQAP for Frodsham includes a list of 11 potential measures which may benefit local air quality within the AQMA. Layout of the affected junction poses particular challenges for amelioration of the issue and further work will be required to ascertain which options will prove most beneficial.

<sup>&</sup>lt;sup>4</sup> National Institute for Health and Care Excellence

The AQAP for Thornton-le-Moors includes measures centred on air quality monitoring for which the Council has responsibility. These will be progressed from 2018.

## How to get involved

As many of the air quality issues in the borough relate to emissions from road vehicles, there are lots of things you can do to help improve local air quality. The easiest way of contributing to the improvement of air quality is to look at alternatives to the way you usually travel. Examples include walking or cycling instead of using the car; catching the bus or train; sharing lifts to work, school and activities; adopting a smooth driving style to reduce fuel use; switching off your engine when stationary; choosing a low emission vehicle such as electric or hybrid for your next car; joining the city car club; using a 'walking bus' for the journey to school. The Council's low emissions strategy (LES) is out to consultation until 12 January 2018 and can be accessed on the Council website.

Adults and children with lung problems and adults with heart problems may be particularly affected by air pollution. Information on local air quality is available on the council's website <u>www.cheshirewestandchester.gov.uk/monitoringstations</u> and further information on forecasting and health advice is available on Defra's UK-air website <u>https://uk-air.defra.gov.uk/</u>

## **Table of contents**

| Contents                                                                     |      |
|------------------------------------------------------------------------------|------|
| Executive summary: air quality in our area                                   | i    |
| Air quality in Cheshire West and Chester                                     | i    |
| Actions to improve air quality                                               | . ii |
| Local priorities and challenges                                              | iv   |
| How to get involved                                                          | .v   |
| 1 Local air quality management                                               | 1    |
| 2 Actions to improve air quality                                             | 2    |
| 2.1 Air quality management areas                                             | 2    |
| 2.2 Progress and impact of measures to address air quality in Cheshire       |      |
| West and Chester                                                             | 4    |
| 2.3 $PM_{2.5}$ – Local authority approach to reducing emissions and or       |      |
| concentrations 1                                                             | 5    |
| 3 Air quality monitoring data and comparison with air quality objectives and |      |
| national compliance 1                                                        | 6    |
| 3.1 Summary of monitoring undertaken1                                        | 6    |
| 3.1.1 Automatic monitoring sites 1                                           | 6    |
| 3.1.2 Non-automatic monitoring sites 1                                       | 6    |
| 3.2 Individual pollutants 1                                                  | 7    |
| 3.2.1 Nitrogen dioxide (NO <sub>2</sub> ) 1                                  | 7    |
| 3.2.1.1 Automatic monitoring 1                                               | 7    |
| 3.2.1.2 Non-automatic monitoring 1                                           | 8    |
| 3.2.2 Particulate matter (PM <sub>10</sub> ) 2                               | 20   |
| 3.2.3 Sulphur dioxide (SO <sub>2</sub> ) 2                                   | 21   |
| Appendix A: Monitoring results 2                                             | 23   |
| Appendix B: Full monthly diffusion tube results for 2016                     | 35   |
| Appendix C: Supporting technical information                                 | 38   |
| Appendix D: Maps of monitoring locations 4                                   | 15   |
| Appendix E: Summary of air quality objectives in England 5                   | 52   |
| Appendix F: Long-term trends 5                                               | 53   |
| Appendix G: Inter-site comparisons 5                                         | 56   |
| Glossary of terms                                                            | 59   |

#### List of tables

| Table 1 Declared air quality management areas                                | 3  |
|------------------------------------------------------------------------------|----|
| Table 2 Progress on measures to improve air quality                          | 6  |
| Table 3 Details of automatic monitoring sites                                | 23 |
| Table 4 Details of current non-automatic monitoring sites                    | 24 |
| Table 5 Details of non-automatic monitoring sites discontinued prior to 2016 | 27 |
| Table 6 Details of non-automatic monitoring sites established for 2016       | 27 |
| Table 7 Annual mean NO <sub>2</sub> monitoring results                       | 28 |
| Table 8 Hourly mean NO <sub>2</sub> monitoring results                       | 33 |
| Table 9 Annual mean PM <sub>10</sub> monitoring results                      | 33 |
| Table 10 24-hour mean PM <sub>10</sub> monitoring results                    | 34 |
| Table 11 SO <sub>2</sub> monitoring results                                  | 34 |
| Table 12 NO <sub>2</sub> monthly diffusion tube results – 2016               | 35 |
| Table 13 Short-term to long-term adjustment 2016 (location AHH)              | 40 |
| Table 14 Short-term to long-term adjustment 2016 (location AP)               | 40 |
| Table 15 Short-term to long-term adjustment 2016 (locations CIN and CIS)     | 40 |
| Table 16 National diffusion tube bias adjustment factor (09/17)              | 43 |
| Table 17 Calculation of local bias adjustment factor                         | 44 |
| Table 18 Air quality objectives in England                                   | 52 |

### List of figures

| Figure 1 Location of automatic monitoring station in Chester                    | 45 |
|---------------------------------------------------------------------------------|----|
| Figure 2 Location of automatic monitoring station in Ellesmere Port             | 45 |
| Figure 3 Location of automatic monitoring stations in Thornton-le-Moors         | 46 |
| Figure 4 Location of automatic monitoring station in Ellesmere Port             | 46 |
| Figure 5 Location of automatic monitoring station in Frodsham                   | 47 |
| Figure 6 Location of automatic monitoring station in Elton                      | 47 |
| Figure 7 Location of NO <sub>2</sub> diffusion tubes in Chester                 | 48 |
| Figure 8 Location of NO <sub>2</sub> diffusion tubes in Chester                 | 48 |
| Figure 9 Location of NO <sub>2</sub> diffusion tubes in Chester                 | 49 |
| Figure 10 Location of NO <sub>2</sub> diffusion tubes in Ellesmere Port         | 49 |
| Figure 11 Location of NO <sub>2</sub> diffusion tubes in Frodsham               | 50 |
| Figure 12 Location of NO <sub>2</sub> diffusion tube, Christleton               | 50 |
| Figure 13 Location of NO <sub>2</sub> diffusion tube, Rudheath                  | 51 |
| Figure 14 Location of NO2 diffusion tube, Allostock.                            | 51 |
| Figure 15 Five-year trends of NO <sub>2</sub> at real-time sites                | 53 |
| Figure 16 Five-year trends of NO <sub>2</sub> at Chester diffusion tubes        | 53 |
| Figure 17 Five-year trends of NO <sub>2</sub> at Ellesmere Port diffusion tubes | 54 |
| Figure 18 Five-year trends of NO <sub>2</sub> at Frodsham diffusion tubes       | 54 |
| Figure 19 Five-year trends of PM <sub>10</sub> in Cheshire West                 | 55 |
| Figure 20 Five-year trends of SO <sub>2</sub> in Cheshire West                  | 55 |
| Figure 21 Inter-site hourly NO <sub>2</sub> comparisons 2016 (AQDM Ltd.)        | 56 |
| Figure 22 Inter-site hourly PM <sub>10</sub> comparisons 2016 (AQDM Ltd.)       | 57 |
| Figure 23 Inter-site hourly SO <sub>2</sub> comparisons 2016 (AQDM Ltd.)        | 58 |

## 1 Local air quality management

This report provides an overview of air quality in Cheshire West and Chester during 2016. It fulfils the requirements of local air quality management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant policy and technical guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an air quality management area (AQMA). After declaration, the authority must prepare an air quality action plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of the objectives.

This annual status report (ASR) is an annual requirement showing the strategies employed by the Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England can be found in Table 18 in Appendix E.

The next scheduled LAQM report will be the 2018 ASR which is due to be submitted in June 2018.

## 2 Actions to improve air quality

### 2.1 Air quality management areas

Air quality management areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. A summary of AQMAs declared by the Council is shown in Table 1. Information relating to declared AQMAs, including maps of AQMA boundaries is available on the Council's website at www.cheshirewestandchester.gov.uk/agmanagement.

There are four designated AQMAs in the borough, three of which relate to the annual mean NO<sub>2</sub> objective (road traffic sources) and one which was declared due to exceedances of the 15-minute objective for SO<sub>2</sub> (industrial sources). In May 2017, the Chester city centre AQMA was declared following a detailed modelling assessment of road traffic undertaken by environmental consultants Bureau Veritas (late 2016 to early 2017). The AQMA encompasses the whole of the inner ring road along with a number of major routes feeding into it. This supersedes the much smaller Boughton AQMA, originally declared in 2008 and extended in 2011, which is now revoked.

An air quality action plan (AQAP) has been produced for the Fluin Lane AQMA this year. The AQAP was developed with contributions from a broad range of Council departments, the support of independent traffic / environmental consultants, Atkins, and a comprehensive public consultation exercise.

Partnership working between the Council's Environmental Protection team, the Environment Agency and industrial operator, Essar has resulted in development of a draft AQAP for the Thornton-le-Moors AQMA. Currently out to public consultation, the AQAP is due to be finalised by the spring of 2018.

Production of an AQAP for the Chester city centre AQMA is a priority for the coming year and the Council has a stated commitment to update and revise the Ellesmere Port AQAP during 2018.

Table 1 Declared air quality management areas

| AQMA<br>name                     | Date of declaration | Pollutants<br>and air<br>quality<br>objectives | City / town           | Description                                                                                                                               | Air quality in the<br>AQMA influenced<br>by roads controlled<br>by Highways | Level of exceedan<br>monitored / mode<br>concentration at le<br>relevant exposure | ce (max<br>lled<br>ocation of    | Action plan<br>(AQAP)                                                                                                                             |
|----------------------------------|---------------------|------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                     |                                                |                       |                                                                                                                                           | England?                                                                    | At declaration                                                                    | Now                              |                                                                                                                                                   |
| Whitby Road<br>/ Station<br>Road | 2005                | NO <sub>2</sub> annual<br>mean                 | Ellesmere Port        | Residential<br>properties on parts<br>of Whitby Rd,<br>Station Rd and<br>Princes Rd                                                       | No                                                                          | 44.5 micrograms<br>per cubic metre<br>(μg/m <sup>3</sup> )                        | 40 μg/m <sup>3</sup>             | Ellesmere Port<br>and Neston BC<br>Air Quality Action<br>Plan 2007<br><u>www.cheshirewest</u><br><u>andchester.gov.uk/</u><br><u>aqmanagement</u> |
| Chester City<br>Centre           | May 2017            | NO2 annual<br>mean                             | Chester               | Area within inner<br>ring road and<br>sections of<br>Liverpool Rd,<br>Parkgate Rd, Hoole<br>Way, Boughton<br>gyratory and<br>Watergate St | No                                                                          | 49.1 μg/m <sup>3</sup>                                                            | 50.3 μg/m <sup>3</sup>           | AQAP due to be<br>completed in 2018                                                                                                               |
| Fluin Lane                       | November<br>2015    | NO <sub>2</sub> annual<br>mean                 | Frodsham              | Junction of A56 and<br>Fluin La.                                                                                                          | No                                                                          | 42.6 μg/m <sup>3</sup>                                                            | 44.2 μg/m <sup>3</sup>           | Frodsham Air<br>Quality Action Plan<br>2018<br><u>www.cheshirewest</u><br><u>andchester.gov.uk/</u><br>aqmanagement                               |
| Thornton-le-<br>Moors            | September<br>2016   | SO <sub>2</sub> 15-minute<br>mean              | Thornton-le-<br>Moors | An area around the<br>oil refinery at<br>Stanlow                                                                                          | No                                                                          | 56 exceedances<br>(15-minute)                                                     | 70<br>exceedances<br>(15-minute) | Draft AQAP<br>produced.<br>Consultation<br>exercise runs to<br>23/02/2018                                                                         |

Cheshire West and Chester Council confirms that the information on the UK-Air website regarding our AQMA(s) is up to date

### 2.2 Progress and impact of measures to address air quality in Cheshire West and Chester

The Council has taken forward a number of measures during the current reporting year of 2016 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2. Key completed measures are:

- Low emissions strategy (LES) the detailed background document supporting the LES was completed in early 2017
- The main LES document was developed in 2016 2017. Work involving extensive inter-departmental liaison resulted in the production of the final consultative draft in late 2017
- A supplementary planning document on parking standards has been produced. This includes minimum specifications for the provision of on-site electric vehicle charging infrastructure in new developments
- The borough-wide 20 mph speed limit programme has commenced with speed limits being progressively introduced on a range of residential streets in a four-year programme to 2020
- Air quality reporting software has been trialled, allowing the oil refinery operator access to monitoring data in near real-time. The aim is to have this fully implemented in early 2018
- Clean vehicle technology funds have been utilised to retrofit exhaust emissions abatement technology on bus services in Chester
- Taxi and private hire vehicle age policy for both entry and exit is now fully implemented
- A number of cycling and walking promotion initiatives are ongoing
- The park and ride contract has been renewed with Euro VI buses in use

The Council expects the following measures to be completed over the course of the next reporting year:

- Finalisation and adoption of the AQAP for Frodsham
- Completion of the consultation exercise on the AQAP for Thornton-le-Moors and progress with a number of the plan's measures
- Completion of the consultation exercise on the (LES) and prioritisation of measures
- With third-party support, undertake an appraisal of electric vehicle charging infrastructure in the borough and carry out a feasibility study on rollout of equipment across a variety of sectors
- Development of the AQAP for Chester city centre

The Council's air quality priorities for the coming year are:

- local air quality management obligations, as detailed above
- finalisation and adoption of the Council's LES
- to formulate a plan of action for the adoption of measures listed in the LES
- incorporation of air quality policies into the local plan, part two
- to promote and enable the uptake of ultra low emission vehicles both internally and externally
- appraise options idling vehicles enforcement
- to apply for and take advantage of central funding opportunities for the introduction of air quality improvement measures
- to produce the 2018 annual status report

Table 2 Progress on measures to improve air quality

|   | Measure                                                                           | EU category                                         | EU<br>classificati<br>on                                      | Lead<br>authorit<br>y | Planning<br>phase | Implementat<br>ion phase            | Key<br>performan<br>ce<br>indicator                                                    | Target<br>pollution<br>reduction<br>in the<br>AQMA | Progress<br>to date                                          | Estimated<br>completio<br>n date       | Comments                                                                                              |
|---|-----------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|-----------------------|-------------------|-------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1 | Air quality<br>supplementary<br>planning<br>document                              | Policy<br>guidance<br>and<br>development<br>control | Air quality<br>planning<br>and policy<br>guidance             | The<br>Council        | 2014              | 2015 - 2016                         |                                                                                        |                                                    | Complete                                                     | Complete                               | The SPD has been<br>produced pending<br>completion of the<br>Local Plan part two<br>in early 2018     |
| 2 | Park and ride<br>contract<br>renewal                                              | Alternatives<br>to private<br>vehicle use           | Bus based<br>park and ride                                    | The<br>Council        | 2014 - 15         | 2016 - 21                           | Upgrade of<br>buses from<br>Euro IV to<br>Euro VI                                      |                                                    | Contract<br>awarded to<br>Stagecoach                         | Complete                               | Second bid for low<br>emission bus<br>scheme (LEBS)<br>funding for EV<br>buses<br><b>unsuccessful</b> |
| 3 | Park and ride.<br>New<br>infrastructure<br>at Boughton<br>Heath and<br>Sealand Rd | Alternatives<br>to private<br>vehicle use           | Bus based<br>park and ride                                    | The<br>Council        | 2017 / 2018       | 2018 and<br>beyond<br>phased stages | Upgrade of<br>existing park<br>and ride<br>waiting<br>facilities to<br>include toilets | Chester-<br>wide                                   | Draft<br>detailed<br>design<br>drawings<br>produced          | 2018 and<br>beyond<br>phased<br>stages | New modern<br>enhanced waiting<br>facilities, providing<br>a gateway to park<br>and ride in Chester   |
| 4 | Electric<br>vehicle (EV)<br>charging<br>points                                    | Promoting<br>low emission<br>transport              | Procuring<br>alternative<br>refuelling<br>infra-<br>structure | The<br>Council        | 2012              | 2015                                |                                                                                        |                                                    | EV<br>charging<br>posts<br>installed at<br>Hooton<br>station | Complete                               | Complete                                                                                              |

|   | Measure                                                                         | EU category                                         | EU<br>classificati<br>on                                      | Lead<br>authorit<br>y | Planning<br>phase | Implementat<br>ion phase         | Key<br>performan<br>ce<br>indicator | Target<br>pollution<br>reduction<br>in the<br>AQMA       | Progress<br>to date                                                        | Estimated<br>completio<br>n date                                                                  | Comments                                                                                                                                                   |
|---|---------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|-----------------------|-------------------|----------------------------------|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Ultra low<br>emission<br>vehicles<br>accelerator                                | Promoting<br>low emission<br>transport              | Procuring<br>alternative<br>refuelling<br>infra-<br>structure | The<br>Council        | 2017              | 2017 / 2018 up<br>to 2022 / 2023 |                                     | Yes,<br>borough<br>wide                                  | Feasibility<br>study<br>funding<br>identified                              | 2018 / 2019<br>main<br>project<br>delivered<br>with<br>ongoing<br>support up<br>to 2022 /<br>2023 | Commission EV<br>infrastructure<br>feasibility study;<br>awareness<br>campaign;<br>capital investment<br>in electric vehicle<br>charging<br>infrastructure |
| 6 | Clean vehicle<br>technology<br>fund (CVTF)<br>for eight bus<br>engine retrofits | Vehicle fleet<br>efficiency                         | Vehicle<br>retrofitting<br>programme<br>s                     | The<br>Council        | 2014              | 2015 / 2016 /<br>2018            | Services in operation in Chester    | Yes.<br>Services<br>running<br>though<br>Chester<br>AQMA | Four buses<br>upgraded:<br>two<br>Stagecoach<br>and two<br>Arrowebroo<br>k | 2018                                                                                              | Further retrofit /<br>portable emissions<br>monitoring tests will<br>be carried out in<br>2018                                                             |
| 7 | Low emissions<br>strategy                                                       | policy<br>guidance<br>and<br>development<br>control | Low<br>emissions<br>strategy                                  | The<br>Council        | 2014 - 15         | 2015 - 18                        | Adoption of strategy                | Yes,<br>borough<br>wide                                  | Draft report<br>produced                                                   | 2018                                                                                              | Broad consultation<br>on draft report. Aim<br>for adoption of final<br>LES early 2018.<br>Numerous<br>mitigation<br>measures included                      |

|    | Measure                                                            | EU category                                 | EU<br>classificati<br>on | Lead<br>authorit<br>y | Planning<br>phase   | Implementat<br>ion phase | Key<br>performan<br>ce<br>indicator | Target<br>pollution<br>reduction<br>in the<br>AQMA                        | Progress<br>to date                                                                                                                                                        | Estimated<br>completio<br>n date                                                                        | Comments                                                                                                                                                                                                                                                                        |
|----|--------------------------------------------------------------------|---------------------------------------------|--------------------------|-----------------------|---------------------|--------------------------|-------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | Secure cycle<br>storage                                            | Transport<br>and planning<br>infrastructure | Cycle<br>network         | The<br>Counci<br>I    | 2009 - 2010         | 2011 - 2016              | Increase in<br>number<br>cyclists.  | Yes,<br>Chester<br>AQMA                                                   | Complete –<br>storage<br>installed at<br>Chester city<br>centre and<br>park and<br>ride sites,<br>Ellesmere<br>Port town<br>centre and<br>selected<br>railway<br>stations. | 2016<br>complete<br>(and on-<br>going,<br>subject to<br>funding<br>applications<br>being<br>successful) | Local sustainable<br>transport fund<br>(LSTF) (2011 -<br>2015) utilised.<br>Subsequent<br>sustainable travel<br>fund bid (2016 -<br>2017)<br><b>unsuccessful</b> .<br>Three-year joint<br>bid to Department<br>for Transport<br>(DfT) (2017 -<br>2020)<br><b>unsuccessful</b> . |
| 9  | Bikeability<br>campaign<br>(schools and<br>adults only<br>schemes) | Promoting<br>travel<br>alternatives         | Promotion<br>of cycling  | The<br>Council        | Annual<br>programme | Ongoing                  | Increase in<br>number<br>cyclists.  | Training is<br>delivered<br>borough<br>wide.<br>Benefits for<br>all AQMAs | Ongoing<br>Subject to<br>annual<br>project<br>review                                                                                                                       | Ongoing                                                                                                 | DfT / Council<br>funded<br>programmes<br>ongoing – road<br>safety team. LSTF<br>connect to jobs<br>scheme complete.                                                                                                                                                             |
| 10 | Let's bike                                                         | Promoting<br>travel<br>alternatives         | Promotion<br>of cycling  | The<br>Council        | Annual<br>programme | Ongoing                  | Increase in<br>number<br>cyclists.  | Training<br>delivered<br>borough-<br>wide.<br>Benefits for<br>all AQMAs   | Ongoing<br>Subject to<br>annual<br>project<br>review                                                                                                                       | Ongoing                                                                                                 | Off-road cycle<br>proficiency training<br>course. Road<br>Safety team                                                                                                                                                                                                           |

|    | Measure                                                 | EU category                                         | EU<br>classificati<br>on              | Lead<br>authorit<br>y | Planning<br>phase   | Implementat<br>ion phase | Key<br>performan<br>ce<br>indicator                                                 | Target<br>pollution<br>reduction<br>in the<br>AQMA                                    | Progress<br>to date                                     | Estimated<br>completio<br>n date | Comments                                                                                                                    |
|----|---------------------------------------------------------|-----------------------------------------------------|---------------------------------------|-----------------------|---------------------|--------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 11 | Let's walk                                              | Promoting<br>travel<br>alternatives                 | Promotion<br>of walking               | The<br>Council        | Annual<br>programme | Ongoing                  | Improve<br>pedestrian<br>confidence to<br>encourage<br>more<br>sustainable<br>trips | Training is<br>delivered<br>borough<br>wide.<br>Benefits for<br>all AQMAs             | Ongoing<br>subject to<br>annual<br>project<br>review    | Ongoing                          | Child training<br>promotes<br>independence                                                                                  |
| 12 | Schools<br>crossing<br>patrols                          | Promoting<br>travel<br>alternatives                 | Promotion<br>of walking               | The<br>Council        | Annual<br>programme | Ongoing                  | Improve<br>pedestrian<br>confidence to<br>encourage<br>more<br>sustainable<br>trips | Yes,<br>borough-<br>wide.<br>Provided at<br>hazardous<br>school<br>crossing<br>points | Ongoing<br>subject to<br>annual<br>project<br>review    | Ongoing                          | Supporting<br>vulnerable road<br>users cross the<br>highway – when<br>arriving and leaving<br>educational<br>establishments |
| 13 | Anti-idling<br>enforcement                              | Traffic<br>management                               | Anti-idling<br>enforce-<br>ment       | The<br>Council        | 2018                | 2018 - 2020              | Reduction of<br>idling<br>frequency<br>and<br>complaints                            | Borough-<br>wide                                                                      | Signs<br>erected at<br>bus stands<br>and taxi<br>ranks  | Ongoing                          | Included as<br>measure in draft<br>LES. To be<br>pursued 2018.                                                              |
| 14 | EV charging<br>points through<br>planning<br>conditions | Policy<br>guidance<br>and<br>development<br>control | AQ planning<br>and policy<br>guidance | The<br>Council        | 2014                | 2015 - 2017              | Planning<br>conditions on<br>applications                                           | Yes,<br>borough-<br>wide                                                              | Supplement<br>ary<br>planning<br>document<br>introduced | 2018                             | Local Plan part two<br>due to be adopted<br>2018                                                                            |
| 15 | Taxi and<br>private hire<br>age policy                  | Promoting<br>low emission<br>transport              | Taxi licensing conditions             | The<br>Council        | 2012                | 2013 - 2014              | Entry and<br>exit ages of<br>vehicles<br>enforced                                   | Yes                                                                                   | Complete<br>January<br>2017                             | Complete                         | Transition period<br>ended 2016. Age<br>policy fully<br>implemented.                                                        |

|    | Measure                                                                                         | EU category                                 | EU<br>classificati<br>on                                                      | Lead<br>authorit<br>y                                                   | Planning<br>phase | Implementat<br>ion phase                     | Key<br>performan<br>ce<br>indicator                                                                                                    | Target<br>pollution<br>reduction<br>in the<br>AQMA | Progress<br>to date         | Estimated<br>completio<br>n date                          | Comments                                                                                                                         |
|----|-------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 16 | Improved park<br>and ride<br>signage on<br>strategic road<br>network (M53,<br>M56 and A55)      | Alternatives<br>to private<br>vehicle use   | Bus based<br>park and ride                                                    | Highway<br>s<br>England<br>in<br>partners<br>hip with<br>the<br>Council | 2016 - 2017       | 2017 - 2018                                  | Increase in<br>park and ride<br>passengers,<br>reduce<br>number of<br>private single<br>occupancy<br>vehicles in<br>the city<br>centre | Yes                                                | Complete<br>June 2017       | Complete                                                  | Provides enhanced<br>static signage and<br>potential variable<br>message signs at<br>slip roads.                                 |
| 17 | Highway cycle<br>improvement<br>scheme at<br>M53 Junction<br>nine                               | Transport<br>and planning<br>infrastructure | Cycle<br>network                                                              | Highway<br>s<br>England<br>in<br>partners<br>hip with<br>the<br>Council | 2016 - 2017       | 2017 - 2018 to<br>be constructed             | Reduce<br>traffic<br>between the<br>E. Port<br>Waterfront<br>development<br>s and town<br>centre via<br>AQMA.                          | Yes.<br>Ellesmere<br>Port                          | Detailed<br>design<br>stage | 2017 / 2018                                               | Providing crossing<br>points and shared-<br>use footpaths<br>between residential<br>and employment<br>areas / railway<br>station |
| 18 | Promote<br>sustainable<br>travel through<br>educational<br>establishment<br>s and<br>workplaces | Promoting<br>travel<br>alternatives         | Promotion<br>walking /<br>Promotion<br>of cycling /<br>School<br>travel plans | The<br>Council,<br>Cheshir<br>e East<br>and<br>Warringt<br>on BC        | 2016 - 2017       | 2017 - 2018 to<br>2019 - 2020<br>revenue bid | Reduction in car journeys                                                                                                              |                                                    | Bid<br>submitted            | 2017 - 2018<br>to 2019 -<br>2020. Bid<br>unsuccess<br>ful |                                                                                                                                  |

|    | Measure                                                                                 | EU category                                 | EU<br>classificati<br>on                 | Lead<br>authorit<br>y                                         | Planning<br>phase | Implementat<br>ion phase                                 | Key<br>performan<br>ce<br>indicator                                                                                   | Target<br>pollution<br>reduction<br>in the<br>AQMA | Progress<br>to date                                                        | Estimated<br>completio<br>n date                               | Comments                                                                                                                                 |
|----|-----------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|---------------------------------------------------------------|-------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | Improved<br>cycling and<br>walking routes                                               | Transport<br>planning and<br>infrastructure | Cycle<br>network                         | The<br>Council,<br>Cheshir<br>e East<br>and<br>Warringt<br>on | 2016 - 2017       | 2017 - 2018 to<br>2019 - 2020<br>Awaiting bid<br>outcome | Reduction in car journeys                                                                                             |                                                    | Bid<br>submitted                                                           | 2017 - 2018<br>to 2019 -<br>2020<br>Awaiting<br>bid<br>outcome | Joint access fund<br>capital bid.<br>Includes various<br>routes around<br>Ellesmere Port<br>including canal<br>Towpath and<br>green loop |
| 20 | Chester<br>western relief<br>road<br>(proposed new<br>road to the<br>west of<br>Chester | Traffic<br>management                       | Strategic<br>highway<br>improveme<br>nts | The<br>Council                                                | 2016 - 2017       | 2018 - 2019                                              | Reduced<br>journey<br>times, relief<br>of the inner<br>ring road,<br>improved<br>access to key<br>employment<br>sites |                                                    | Bid<br>submitted                                                           |                                                                | Funding bid<br><b>unsuccessful</b>                                                                                                       |
| 21 | Chester city<br>gateway road<br>(proposed<br>scheme on<br>Hoole Road<br>corridor)       | Traffic<br>management                       | Strategic<br>highway<br>improveme<br>nts | The<br>Council                                                | 2016 - 2017       | 2018 - 2019                                              | Reduced<br>journey<br>times, relief<br>of the inner<br>ring road,<br>improved<br>access to key<br>employment<br>sites |                                                    | Bid<br>submitted<br>to the DfT<br>through the<br>large local<br>major fund |                                                                | Funding bid<br>unsuccessful                                                                                                              |

|    | Measure                                   | EU category           | EU<br>classificati<br>on                           | Lead<br>authorit<br>y | Planning<br>phase | Implementat<br>ion phase            | Key<br>performan<br>ce<br>indicator                                                                                              | Target<br>pollution<br>reduction<br>in the<br>AQMA | Progress<br>to date                                                          | Estimated<br>completio<br>n date                 | Comments                                                                                                                                  |
|----|-------------------------------------------|-----------------------|----------------------------------------------------|-----------------------|-------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 22 | Borough-wide<br>parking<br>strategy       | Traffic<br>management | Other                                              | The<br>Council        | 2016 - 2017       | 2017 Council<br>adopted<br>strategy | Rebalance<br>parking<br>priorities<br>against<br>supply and<br>demand<br>while<br>promoting<br>sustainable<br>transport<br>modes | Reduce<br>congestion<br>in AQMA                    | Final<br>parking<br>strategy<br>adopted in<br>2017                           | 2017 - 2032<br>15-year<br>delivery<br>time frame | Improved off-<br>street<br>enforcement<br>measures.<br>Promote Chester<br>park and ride<br>over other<br>parking offers in<br>Chester     |
| 23 | 20mph limits<br>on residential<br>streets | Traffic<br>management | Reduction<br>of speed<br>limits,<br>20mph<br>zones | The<br>Council        | 2015              | 2016 - 2020                         | Successful<br>rollout of<br>scheme over<br>four year<br>programme                                                                |                                                    | Scheme<br>approved<br>January<br>2016.<br>Rollout<br>commence<br>d late 2016 | 2020                                             | Promotes<br>smoother driving<br>style. Emissions<br>reduction from<br>diesel vehicles<br>should lead to<br>overall emissions<br>reduction |

|    | Measure                                                                                                                                   | EU category                         | EU<br>classificati<br>on | Lead<br>authorit<br>y                                                                                                 | Planning<br>phase | Implementat<br>ion phase                                                                                                                                                                                           | Key<br>performan<br>ce<br>indicator                                                                 | Target<br>pollution<br>reduction<br>in the<br>AQMA | Progress<br>to date                                                                               | Estimated<br>completio<br>n date                                                                                      | Comments                                                                                                                                          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 24 | Smart and<br>integrated<br>ticketing<br>across public<br>transport in<br>the north of<br>England (all<br>rail, tram and<br>bus operators) | Promoting<br>travel<br>alternatives | Other                    | Transpo<br>rt for the<br>North<br>(TfN),<br>Council<br>lead on<br>behalf of<br>Cheshir<br>e and<br>Warringt<br>on LEP | 2017              | 2019 - 2023<br>2019 -major<br>conurbations<br>bus and light<br>rail<br>2020 - minor<br>conurbations<br>bus and light<br>rail<br>2021 - towns<br>and trains<br>2022 - 2023<br>Full roll out<br>across the<br>north. | Successful<br>rollout of<br>scheme<br>throughout<br>the north of<br>England                         | Yes,<br>borough-<br>wide.                          | Policy,<br>processes<br>and back<br>office<br>functionality<br>specified,<br>with<br>consultation | 2023 roll-<br>out across<br>the whole<br>of the north<br>of England<br>(including<br>Cheshire<br>West and<br>Chester) | TfN working with<br>the DfT, 19 local<br>authorities, five<br>light rail<br>operators, three<br>train operators<br>and over 400<br>bus operators. |
| 25 | Route and<br>branch public<br>transport<br>review                                                                                         | Promoting<br>travel<br>alternatives | Other                    | The<br>Council                                                                                                        | 2017              | 2018 / 2019                                                                                                                                                                                                        | Increase in<br>bus<br>passengers,<br>reduce<br>number of<br>private single<br>occupancy<br>vehicles | Yes,<br>borough-<br>wide.                          | 2017<br>Baseline<br>review and<br>bench<br>marking,<br>appraisal<br>and options<br>appraisal      | 2018<br>review<br>complete<br>with<br>implementa<br>tion of<br>preferred<br>options<br>from 2019                      | Council project<br>lead, working with<br>other LAs,<br>commercial bus<br>operators and<br>other providers.                                        |

|    | Measure                                                                                           | EU category                            | EU<br>classificati<br>on                                                                                           | Lead<br>authorit<br>y                 | Planning<br>phase | Implementat<br>ion phase                                                                | Key<br>performan<br>ce<br>indicator                                                                 | Target<br>pollution<br>reduction<br>in the<br>AQMA | Progress<br>to date                                                                                 | Estimated<br>completio<br>n date                                                           | Comments                                                                                                                                                 |
|----|---------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26 | Bus lane<br>enforcement in<br>Chester using<br>automatic<br>number plate<br>recognition<br>(ANPR) | Traffic<br>management                  | Strategic<br>highway<br>improveme<br>nts,<br>selective<br>vehicle<br>priority, bus<br>priority,<br>high<br>vehicle | The<br>Council                        | 2017              | 2017 / 2018<br>Implemented<br>in phased<br>stages (subject<br>to trail<br>phase/period) | Increase in<br>bus<br>passengers,<br>reduce<br>number of<br>private single<br>occupancy<br>vehicles | Chester-<br>wide                                   | Policy<br>review and<br>bench<br>marking for<br>permitted<br>vehicle use<br>in Chester<br>bus lanes | From 2017<br>/ 2018.<br>Implemente<br>d in phased<br>stages<br>(subject to<br>trial phase) | Council to review<br>existing policy<br>and benchmark<br>against other LAs<br>prior to writing<br>any new traffic<br>regulation orders<br>for bus lanes. |
| 27 | Eco stars fleet<br>recognition<br>scheme                                                          | Promoting<br>low emission<br>transport | Company<br>vehicle<br>procure-<br>ment -<br>prioritising<br>uptake of<br>low<br>emission<br>vehicles               | The<br>Council /<br>Cheshir<br>e East | 2016              |                                                                                         | Adoption of<br>Eco stars<br>scheme                                                                  | Yes,<br>borough-<br>wide                           | Air quality<br>grant bid<br>submitted<br>2016                                                       |                                                                                            | Bid<br>unsuccessful                                                                                                                                      |
| 28 | Bus<br>interchange<br>conditions of<br>use                                                        | Traffic<br>management                  | Anti-idling<br>enforce-<br>ment                                                                                    | The<br>Council                        | 2016              | 2017 onwards                                                                            | Compliance<br>with<br>conditions                                                                    | Yes, facility<br>is within<br>Chester<br>AQMA      | 2017 policy<br>introduced                                                                           | Ongoing                                                                                    | Drivers must<br>switch off engines<br>unless a<br>departure is<br>imminent                                                                               |

## 2.3 PM<sub>2.5</sub> – Local authority approach to reducing emissions and or concentrations

As detailed in policy guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of  $PM_{2.5}$ (particulate matter with an aerodynamic diameter of 2.5µm (micrometres) or less). There is clear evidence that  $PM_{2.5}$  has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases. The Public Health Outcomes Framework indicates that the fraction of mortality attributable to particulate matter in Cheshire West and Chester is 5.2%.

The Council does not currently monitor  $PM_{2.5}$  as it is not currently a requirement of LAQM. However,  $PM_{10}$  (particulate matter with an aerodynamic diameter of 10µm (micrometres) or less) is recorded at three monitoring stations in the borough and, as  $PM_{2.5}$  is a subset of  $PM_{10}$ , it is possible to estimate the probable local levels by considering the ratio of the two fractions of particulate matter, as detailed in the technical guidance LAQM.TG16. Applying the nationally derived correction ratio of 0.7 to local data suggests that local  $PM_{2.5}$  levels at background sites lie in the range 8.3 to 11.2, which is well below the national annual mean objective of  $25\mu g/m^3$  (micrograms per cubic metre). In recognition of the close association between particulates and health, this figure may be used as a benchmark against which to gauge local improvements over time.

Measures listed in Table 2 above will contribute in general to improvements in levels of PM<sub>2.5</sub>. A significant amount of effort has been made to produce a low emission strategy (LES) for the Borough which will tackle NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub>. It is focused on reducing emissions from road vehicles and supporting more sustainable modes of transport with the ambition of improving the health of residents and reducing the number of deaths that arise every year attributable to poor air quality. The action toolbox, table A.1 in LAQM.TG16 lists a range of measures that can be implemented to tackle PM<sub>2.5</sub> and many of these are incorporated into the draft LES. The Environmental Protection team has a close working relationship with the Director of Public Health and will continue to work collaboratively to determine how air quality can be prioritised across a wide range of policy areas as well identifying specific measures to address PM<sub>2.5</sub>.

## 3 Air quality monitoring data and comparison with air quality objectives and national compliance

## 3.1 Summary of monitoring undertaken

#### 3.1.1 Automatic monitoring sites

The Council undertook automatic (continuous) monitoring at six sites during 2016. Details of the sites are shown in Table 3 in Appendix A.

NO<sub>2</sub>, NO (nitric oxide) and NO<sub>x</sub> (oxides of nitrogen) were measured using chemiluminescent analysers at the two roadside sites in Chester and Ellesmere Port (BO and WH) and the two groundhog cabins in Frodsham and Thornton-le-Moors (FMH and TLP), and also using the Opsis differential optical absorption spectrometer (DOAS) system at the Ellesmere Port urban background site (LR-JG).

Sulphur dioxide (SO<sub>2</sub>) was measured using UV fluorescence at monitoring stations in Elton (ELT), Frodsham FMH, Thornton-le-Moors (TLP) and Ellesmere Port (LR-JG, as above).

PM<sub>10</sub> was measured using tapered element oscillating microbalances (TEOMs) at Frodsham (FMH) and Ellesmere Port (LR-JG) and Thornton-le-Moors (TLP) using a beta attenuation monitor (BAM).

There are no national network sites in the borough but results for sites in neighbouring / nearby districts are available at <a href="https://uk-air.defra.gov.uk/">https://uk-air.defra.gov.uk/</a> .

Maps showing the location of the monitoring sites are provided in Figure 1 to Figure 6 in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C.

#### 3.1.2 Non-automatic monitoring sites

The Council carried out non-automatic (passive) monitoring of NO<sub>2</sub> at 52 locations during 2016. Table 4 shows the details of the sites. Since last year's report, nine NO<sub>2</sub> diffusion tube sites and one benzene site have been discontinued and nine new ones established, either at the start of 2016 or part way through the year (Table 5 and Table 6). The former monitoring location AP adjacent to the M6 motorway in Allostock was re-established in 2016 in response to long-term, extensive carriageway

realignment works. Maps showing the locations of the monitoring sites are provided in Figure 7 to Figure 14 in Appendix D. These can also be accessed along with annual mean data on the Council website at:

www.cheshirewestandchester.gov.uk/airquality.

All tubes are prepared and analysed by Gradko International Ltd. Gradko's performance in the AIR-PT NO<sub>2</sub> proficiency testing scheme scored 100% satisfactory rating in all rounds for 2016. Further details on quality assurance / quality control (QA/QC), bias adjustment and distance correction for the diffusion tubes are included in Appendix C.

## 3.2 Individual pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for bias, distance correction and annualisation. Further details on adjustments are provided in Appendix C.

#### 3.2.1 Nitrogen dioxide (NO<sub>2</sub>)

#### 3.2.1.1 Automatic monitoring

Table 7 in Appendix A compares the ratified and adjusted NO<sub>2</sub> annual mean results over the past five years with the air quality objective of  $40\mu g/m^3$ . In 2016, NO<sub>2</sub> at monitoring station WH in Ellesmere Port was  $40\mu g/m^3$ , which is the same as in 2015. Results for all other automatic monitoring stations were comfortably below the annual objective. It should be noted, however, that real-time monitoring stations are not necessarily in worst-case locations because of siting constraints.

Table 8 in Appendix A compares the ratified continuous monitored NO<sub>2</sub> hourly mean concentrations for the past five years with the air quality objective of  $200\mu g/m^3$ . In common with previous years there were no recorded exceedances of the one-hour standard at any of the monitoring sites in 2016.

Diffusion tubes are collocated with the automatic stations at Boughton, Chester (BO) and Whitby Road, Ellesmere Port (WH). The latter is a triplicate set, the results from which are submitted to Defra annually to contribute to the calculation of national bias adjustment factors.

Five-year trends in annual mean levels of NO<sub>2</sub> at automatic monitoring sites within Cheshire West and Chester are presented in Figure 15. A slight downwards trend is discernible for the roadside sites, WH and BO.

In Figure 21, time series plots of hourly NO<sub>2</sub> from local sites are presented alongside plots for the automatic urban and rural network (AURN) sites in the region.

#### 3.2.1.2 Non-automatic monitoring

Diffusion tubes were used to monitor  $NO_2$  at 52 sites in 2016. Results presented in Table 12 in Appendix B have been adjusted for bias using Defra's national factor for 2016 and, where necessary, corrected for distance to relevant exposure. The full dataset of monthly averages for 2016 is also displayed in Table 12. Details of quality control and any adjustments that have been applied are given in Appendix C.

There were no recorded annual means in excess of  $60\mu g/m^3$  at any of the nonautomatic monitoring locations and it is therefore unlikely that there were any exceedances of the hourly mean objective at any of these sites during 2016. 12 tubes were above the annual objective, although all were below  $50\mu g/m^3$  (after correction), with the exception of location T6 ( $50.3\mu g/m^3$ ).

Diffusion tube levels, as a whole, when compared to 2015 results, have generally risen (see data adjustments Appendix C.4.3 to 4.6). In 2015, six sites were above the objective and a further ten were within 10%, compared to 12 above the objective and 12 within 10% in 2016.

#### Chester

Diffusion tubes were deployed at 40 locations in Chester in 2016. The four highest levels of NO<sub>2</sub> in the borough were all recorded in Chester, and ten out of the 12 sites in the borough that exceeded the annual objective were in Chester. Three of these ten sites (C11, C36 and T6) are within the Boughton AQMA , and six more (LVR, OW, PG, RM, UN and WG) are within the extended Chester AQMA which was declared in May 2017 as a result of the detailed assessment completed in late 2016. All the remaining sites in Chester were below the objective, with the exception of MCC on the A41 in the village of Christleton which returned an annual mean of

 $43.4\mu$ g/m<sup>3</sup>. This location returned an annual mean above the objective level in 2014 and was within 10% in 2015. Additional monitoring has commenced around this location in 2017 to assess whether it is necessary to proceed to an AQMA declaration in this area.

Several sites in Chester achieved compliance with the objective level only after application of bias adjustment and/or distance correction and a further ten sites were within 10% of the objective in Chester following these corrections. Of these ten, one lies within the Boughton AQMA extant in 2016 and the other nine lie within the extended Chester AQMA declared in May 2017.

Several sites were established in 2016 to assess more locations within the likely extended Chester AQMA. Of these, location LVR exceeded the objective, and LVS and NIN were within 10%.

Most sites experienced a slight increase in  $NO_2$  when compared with 2015, although there is no clear long-term trend. Five-year monitoring trends in  $NO_2$  at a selection of Chester monitoring sites are shown in Figure 16.

#### **Ellesmere Port**

Results from diffusion tube monitoring locations in Ellesmere Port were all compliant with the national annual mean objective in 2016 after bias-adjustment and distance correction. Only one site (SR) was within 10% of the objective. Results for the tubes located in the street canyon part of the Ellesmere Port AQMA may have been higher had the local bias-adjustment factor been used (see Appendix C).

Most sites in Ellesmere Port experienced a slight increase in  $NO_2$  when compared with 2015, although there is no clear long-term trend. Figure 17 shows five-year trends in  $NO_2$  at a selection of the town's monitoring sites.

#### Frodsham

The diffusion tube at FH returned the fifth-highest result within the borough (43.7µg/m<sup>3</sup>), and this and FJ were the only locations outside Chester where results exceed the national annual mean objective. Both tube locations are within the Frodsham AQMA. The other two tubes in the AQMA were compliant with the

objective following bias-adjustment and distance correction, although FT was within 10%. The other tube in the town, CFL, was comfortably below the objective. Most sites in Frodsham experienced a slight increase in NO<sub>2</sub> when compared to 2015, although there is no clear long-term trend. Figure 18 shows five-year trends in NO<sub>2</sub> at a selection of the town's monitoring sites.

#### Northwich

Results for the single tube in Northwich, on the A530 at Rudheath, was comfortably below the annual mean objective following bias-adjustment and distance correction.

#### Allostock

Monitoring on either side of the M6 in the village of Allostock commenced in 2016 (site AP recommencing) in response to concerns about the ongoing conversion of sections of the M6 to a so-called smart motorway that could result in traffic being brought closer to existing residences through periodic use of the hard shoulder by traffic. Levels at both sites (AHH and AP) were comfortably below the objective, but monitoring will continue as construction work continues.

#### 3.2.2 Particulate matter (PM<sub>10</sub>)

Table 9 in Appendix A shows how the ratified and adjusted annual mean  $PM_{10}$  concentrations over the past five years compare with the air quality objective of  $40\mu g/m^3$ .

In 2016, all sites monitoring  $PM_{10}$  returned results comfortably below the annual objective. Table 10 in Appendix A compares the ratified, continuously monitored  $PM_{10}$  daily mean concentrations for the past five years with the air quality objective of  $50\mu g/m^3$  (not to be exceeded more than 35 times per year).

The 24-hour mean objective was not exceeded at any monitoring station in the borough during 2016.

Figure 19 shows trends in annual  $PM_{10}$  at local sites over the last five years. Although the overall trend at the Ellesmere Port site is downwards, there is insufficient data from the other monitoring sites to determine a trend. The time series plots in Figure 22 show how the local results compare to the national AURN site at Liverpool Speke.

#### 3.2.3 Sulphur dioxide (SO<sub>2</sub>)

Table 11 in Appendix A compares the ratified continuously monitored  $SO_2$  concentrations for the year 2016 with the three  $SO_2$  air quality objectives.

In 2016, there were 70 occasions, spread over 17 days, when the 15-minute objective of  $266\mu$ g/m<sup>3</sup> was exceeded in Thornton-Ie-Moors (at monitoring site TLP). The objective allows for 35 such exceedances, so the standard has been exceeded again this year. Annual data capture at this location was 95.8%.

A single exceedance of the 15-minute objective was recorded at the Elton monitoring station (ELT).

The hourly mean standard was exceeded on four occasions at Thornton-le-Moors. However, as there is an annual exceedance allowance of 24 hourly periods, the objective was not exceeded.

The 24-hour limit was exceeded on one day in Thornton-le-Moors but the annual exceedance allowance of three 24-hour periods was not exceeded.

No exceedances of any of the SO<sub>2</sub> objectives were recorded at either Ellesmere Port (LR-JG) or Frodsham (FMH).

A graph showing five-year trends of SO<sub>2</sub> (as 99.9<sup>th</sup> percentiles of the 15-minute average) from the real-time automatic monitors is presented in Figure 20. The graph includes plots of data for former monitoring stations that are no longer operational: HE was located on Mountain View, Helsby; SG was located at The Oaks Primary School, Ellesmere Port and TLM was the initial monitoring site in Thornton-le-Moors at the parish hall. The latter was relocated to the current site, TLP, in 2015 because of extensive refurbishment works. Details of the monitoring results for each of these sites is available in earlier assessment reports. For most sites the monitoring period has not been long enough to determine an overall trend. However, at LR-JG in

Ellesmere Port, the 99.9<sup>th</sup> percentiles have been relatively static over time and remain comfortably below the national objective.

Figure 23 shows how the local results compare with regional AURN sites. The frequency and scale of peak SO<sub>2</sub> readings at Thornton-le-Moors and, to a lesser degree, Elton, contrasts markedly with those at other monitoring stations.

#### 3.3 Summary

In 2016 the Council measured concentrations of nitrogen dioxide above the annual mean objective at relevant locations outside of extant AQMAs.

In Chester, this led to the declaration of the city centre AQMA in May 2016. In Christleton, a single tube exceeded the objective so monitoring was expanded in 2017 to determine the likely area of exceedance.

Within the Ellesmere Port AQMA a single tube location recorded nitrogen dioxide at the annual objective level. The result for the real-time continuous analyser was  $40\mu$ g/m<sup>3</sup>.

In 2016, the Council measured concentrations of sulphur dioxide above the 15minute mean objective on more than 35 occasions at Thornton-Ie-Moors. An AQMA was declared for the area around Thornton-Ie-Moors in September 2016 for industrial emissions.

## **Appendix A: Monitoring results**

Table 3 Details of automatic monitoring sites

| Site ID | Site name             | Site type           | Easting          | Northing         | Pollutants<br>monitored                                 | In<br>AQMA? | Monitoring<br>technique                                | Distance<br>to<br>relevant<br>exposure<br>(m) <sup>(1)</sup> | Distance<br>to kerb of<br>nearest<br>road<br>(m) <sup>(2)</sup> | Inlet<br>height<br>(m) |
|---------|-----------------------|---------------------|------------------|------------------|---------------------------------------------------------|-------------|--------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|------------------------|
| WH      | Whitby Rd             | Roadside            | 340197           | 376363           | NO <sub>2</sub> ,                                       | Yes         | Chemiluminescent                                       | 15                                                           | 2.5                                                             | 3.5                    |
| LR-JG   | Central<br>library    | Urban<br>background | 340258<br>339947 | 376602<br>375889 | NO <sub>2</sub> , SO <sub>2</sub><br>PM <sub>10</sub>   | No          | DOAS<br>TEOM                                           | 10                                                           | n/a                                                             | 11.0                   |
| BO      | Boughton              | Roadside            | 341864           | 366444           | NO <sub>2</sub>                                         | Yes         | Chemiluminescent                                       | 25                                                           | 3.0                                                             | 1.0                    |
| FMH     | Frodsham              | Urban<br>background | 352445           | 378031           | NO <sub>2</sub> , SO <sub>2</sub> ,<br>PM <sub>10</sub> | No          | Chemiluminescent<br>UV-fluorescent<br>TEOM             | 24                                                           | 7.0                                                             | 2.5                    |
| TLP     | Thornton-<br>le-Moors | Industrial          | 344103           | 374330           | NO <sub>2</sub> , SO <sub>2</sub> ,<br>PM <sub>10</sub> | Yes         | Chemiluminescent<br>UV-fluorescent<br>Beta attenuation | 38                                                           | n/a                                                             | 2.5                    |
| ELT     | Elton                 | Industrial          | 345642           | 375522           | SO <sub>2</sub>                                         | No          | UV-fluorescent                                         | 0                                                            | n/a                                                             | 2.0                    |

#### Notes:

(1) Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

(2) N/A if not applicable.

Table 4 Details of current non-automatic monitoring sites

| Site ID | Site name             | Site type | Easting | Northing | Pollutants<br>monitored | In AQMA? | Distance<br>to<br>relevant<br>exposure<br>(m) <sup>(1)</sup> | Distance<br>to kerb of<br>nearest<br>road (m) | Collocated<br>with<br>analyser | Height<br>(m) |
|---------|-----------------------|-----------|---------|----------|-------------------------|----------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------|---------------|
| AHH     | Allostock holly       | Other     | 373255  | 371475   | NO <sub>2</sub>         | No       | 0.0                                                          | 68.0                                          | No                             | 2.0           |
| AP      | Pine Cottage          | Roadside  | 373386  | 371500   | NO <sub>2</sub>         | No       | 0.0                                                          | 34.0                                          | No                             | 1.8           |
| BE      | Bedward Row           | Roadside  | 340239  | 366418   | NO <sub>2</sub>         | Chester  | 0.5                                                          | 2.4                                           | No                             | 2.4           |
| BJ      | Backpackers / jade    | Roadside  | 341401  | 366512   | NO <sub>2</sub>         | Chester  | 0.5                                                          | 2.5                                           | No                             | 2.4           |
| BO      | Boughton RTA          | Roadside  | 341864  | 366444   | NO <sub>2</sub>         | Chester  | 25.0                                                         | 2.0                                           | Yes                            | 2.5           |
| C11     | 11 Christleton Road   | Roadside  | 341915  | 366427   | NO <sub>2</sub>         | Chester  | 0.0                                                          | 1.0                                           | No                             | 2.0           |
| C36     | Christleton Road (36) | Roadside  | 342000  | 366374   | NO <sub>2</sub>         | Chester  | 0.5                                                          | 1.5                                           | No                             | 2.5           |
| C75     | Christleton Road (75) | Roadside  | 342056  | 366354   | NO <sub>2</sub>         | Chester  | 0.5                                                          | 2.0                                           | No                             | 2.5           |
| CFL     | Church Street (lower) | Roadside  | 351762  | 377862   | NO <sub>2</sub>         | No       | 4.8                                                          | 1.0                                           | No                             | 2.2           |
| CIN     | City Road (north)     | Roadside  | 341219  | 366768   | NO <sub>2</sub>         | No       | 1.5                                                          | 3.0                                           | No                             | 2.5           |
| CIS     | City Road (south)     | Roadside  | 341219  | 366692   | NO <sub>2</sub>         | No       | 0.5                                                          | 4.0                                           | No                             | 2.1           |
| EB      | Boughton Edgeley      | Roadside  | 341658  | 366487   | NO <sub>2</sub>         | Chester  | 0.0                                                          | 2.0                                           | No                             | 2.5           |
| FGS     | Foregate St           | Roadside  | 340859  | 366388   | NO <sub>2</sub>         | Chester  | >50                                                          | 1.0                                           | No                             | 2.2           |
| FH      | High Street (72)      | Roadside  | 352146  | 378139   | NO <sub>2</sub>         | Frodsham | 0.2                                                          | 2.0                                           | No                             | 2.5           |
| FJ      | Fluin junction        | Roadside  | 352171  | 378140   | NO <sub>2</sub>         | Frodsham | 0.5                                                          | 2.0                                           | No                             | 2.5           |
| FM      | Fluin La (Manor Farm) | Roadside  | 352189  | 378094   | NO <sub>2</sub>         | Frodsham | 0.3                                                          | 2.0                                           | No                             | 2.5           |
| FT      | Fluin Lane (terrace)  | Roadside  | 352176  | 378105   | NO <sub>2</sub>         | Frodsham | 0.2                                                          | 1.7                                           | No                             | 2.0           |
| GD      | George and Dragon     | Roadside  | 340331  | 366998   | NO <sub>2</sub>         | Chester  | 10.0                                                         | 0.5                                           | No                             | 2.0           |
| GE      | George Street (S)     | Roadside  | 340657  | 366730   | NO <sub>2</sub>         | Chester  | 1.0                                                          | 5.0                                           | No                             | 2.4           |
| GI      | St Giles              | Roadside  | 341951  | 366396   | NO <sub>2</sub>         | Chester  | 3.0                                                          | 3.0                                           | No                             | 2.5           |
| GSW     | Gorse Stacks          | Roadside  | 340700  | 366687   | NO <sub>2</sub>         | Chester  | 1.0                                                          | 1.6                                           | No                             | 2.1           |
| HB      | Hoole Lane - Boughton | Roadside  | 341605  | 366527   | NO <sub>2</sub>         | Chester  | 3.0                                                          | 1.2                                           | No                             | 2.4           |

| Site ID | Site name                 | Site type | Easting | Northing | Pollutants monitored | In AQMA?       | Distance<br>to<br>relevant     | Distance<br>to kerb of<br>nearest | Collocated<br>with<br>analyser | Height<br>(m) |
|---------|---------------------------|-----------|---------|----------|----------------------|----------------|--------------------------------|-----------------------------------|--------------------------------|---------------|
|         |                           |           |         |          |                      |                | exposure<br>(m) <sup>(1)</sup> | road (m)                          |                                |               |
| HW      | Hoole Way                 | Roadside  | 340881  | 366826   | NO <sub>2</sub>      | Chester        | 1.0                            | 1.9                               | No                             | 2.4           |
| IC      | Ingham Close              | Roadside  | 342068  | 366332   | NO <sub>2</sub>      | Chester        | 2.0                            | 2.0                               | No                             | 2.0           |
| KR      | King St. Rudheath         | Roadside  | 368432  | 372988   | NO <sub>2</sub>      | No             | 4.5                            | 2.2                               | No                             | 2.0           |
| LH      | Lincoln House             | Roadside  | 341126  | 366540   | NO <sub>2</sub>      | Chester        | 3.0                            | 2.0                               | No                             | 3.0           |
| LI2     | Liverpool Road            | Roadside  | 340354  | 367034   | NO <sub>2</sub>      | Chester        | 7.0                            | 2.5                               | No                             | 2.2           |
| LVR     | Love St residential       | Roadside  | 340980  | 366315   | NO <sub>2</sub>      | Chester        | 0.0                            | 1.8                               | No                             | 2.2           |
| LVS     | Love St school            | Roadside  | 340990  | 366317   | NO <sub>2</sub>      | Chester        | 8.0                            | 1.8                               | No                             | 2.2           |
| MCC     | Christleton(Mill Cottage) | Roadside  | 343785  | 365502   | NO <sub>2</sub>      | No             | 0.7                            | 2.3                               | No                             | 2.0           |
| NIN     | Nicholas St (north)       | Roadside  | 340284  | 366199   | NO <sub>2</sub>      | Chester        | 0.0                            | 3.0                               | No                             | 2.3           |
| NIS     | Nicholas St (south)       | Roadside  | 340329  | 366114   | NO <sub>2</sub>      | Chester        | 0.0                            | 4.3                               | No                             | 2.2           |
| NS      | Newsagent Station Rd      | Roadside  | 340406  | 376724   | NO <sub>2</sub>      | Ellesmere Port | 2.0                            | 4.0                               | No                             | 2.0           |
| OB      | Boughton (105)            | Roadside  | 341633  | 366510   | NO <sub>2</sub>      | Chester        | 0.6                            | 2.5                               | No                             | 2.5           |
| OF      | St Oswald's - fountains   | Roadside  | 340453  | 366853   | NO <sub>2</sub>      | Chester        | 11.0                           | 4.8                               | No                             | 3.0           |
| OW      | St Oswald's Way           | Roadside  | 340623  | 366823   | NO <sub>2</sub>      | Chester        | 2.3                            | 2.3                               | No                             | 2.3           |
| PA      | Parkgate Rd (19)          | Roadside  | 340313  | 367014   | NO <sub>2</sub>      | Chester        | 2.4                            | 0.8                               | No                             | 2.4           |
| PG      | Parkgate Road (5)         | Roadside  | 340322  | 366989   | NO <sub>2</sub>      | Chester        | 0.2                            | 1.8                               | No                             | 2.0           |
| RM      | Rock Mount                | Roadside  | 340291  | 367108   | NO <sub>2</sub>      | Chester        | 0.0                            | 3.8                               | No                             | 2.2           |
| RR      | Richfield recruitment     | Roadside  | 340180  | 376338   | NO <sub>2</sub>      | Ellesmere Port | 3.0                            | 2.1                               | No                             | 2.5           |
| SA      | Samaritans                | Roadside  | 340364  | 366929   | NO <sub>2</sub>      | Chester        | 0.2                            | 2.5                               | No                             | 2.5           |
| SM      | St Martins Way            | Roadside  | 340224  | 366599   | NO <sub>2</sub>      | Chester        | 1.2                            | 2.2                               | No                             | 2.4           |
| SR      | Station Rd                | Roadside  | 340435  | 376790   | NO <sub>2</sub>      | Ellesmere Port | 0.0                            | 1.6                               | No                             | 2.5           |
| SZ      | Specialized               | Roadside  | 341819  | 366475   | NO <sub>2</sub>      | Chester        | 0.5                            | 2.0                               | No                             | 2.5           |
| T44     | Tarvin Road (44)          | Roadside  | 342085  | 366446   | NO <sub>2</sub>      | Chester        | 3.5                            | 1.0                               | No                             | 2.5           |

| Site ID | Site name               | Site type | Easting | Northing | Pollutants<br>monitored | In AQMA?       | Distance<br>to<br>relevant<br>exposure<br>(m) <sup>(1)</sup> | Distance<br>to kerb of<br>nearest<br>road (m) | Collocated<br>with<br>analyser | Height<br>(m) |
|---------|-------------------------|-----------|---------|----------|-------------------------|----------------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------|---------------|
| T6      | Tarvin Road (6)         | Roadside  | 341926  | 366446   | NO <sub>2</sub>         | Chester        | 0.2                                                          | 2.0                                           | No                             | 2.0           |
| ТВ      | The Bars                | Roadside  | 341202  | 366470   | NO <sub>2</sub>         | Chester        | 2.0                                                          | 1.0                                           | No                             | 2.5           |
| UN      | Upper Northgate St (44) | Roadside  | 340357  | 366960   | NO <sub>2</sub>         | Chester        | 0.2                                                          | 3.0                                           | No                             | 2.2           |
| WG      | Watergate St            | Roadside  | 340217  | 366209   | NO <sub>2</sub>         | Chester        | 0.2                                                          | 1.5                                           | No                             | 2.0           |
| WGW     | Watergate - walls       | Roadside  | 340165  | 366198   | NO <sub>2</sub>         | Chester        | 0.0                                                          | 2.2                                           | No                             | 2.2           |
| WH      | Whitby Road             | Roadside  | 340196  | 376363   | NO <sub>2</sub>         | Ellesmere Port | 32.0                                                         | 1.2                                           | Yes                            | 3.5           |
| WXP     | Wrexham Rd              | Roadside  | 339641  | 363499   | NO <sub>2</sub>         | No             | >50                                                          | 8.0                                           | No                             | 3.0           |

#### Notes:

(1) Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the facade of a residential property).

(2) n/a if not applicable.

| Site | Site name               | Town              | Pollutant       | Reason for discontinuing                                       |
|------|-------------------------|-------------------|-----------------|----------------------------------------------------------------|
| ID   |                         |                   |                 |                                                                |
| HC   | 5 Holmes Chapel Road    | Sproston          | NO <sub>2</sub> | Below objective                                                |
| QS   | Queen Street            | Northwich         | NO <sub>2</sub> | Below objective                                                |
| TG   | The Green               | Hartford          | NO <sub>2</sub> | Below objective                                                |
| BA2  | A49, Bartington         | Bartington        | NO <sub>2</sub> | Below objective                                                |
| FV   | Frodsham weaver vale    | Frodsham          | NO <sub>2</sub> | Below objective                                                |
| SCS  | Sutton Causeway (south) | Frodsham          | NO <sub>2</sub> | Below objective                                                |
| WW   | Wetherspoons Whitby     | Ellesmere Port    | NO <sub>2</sub> | Below objective                                                |
| WT   | Welsh Road              | Two Mills         | NO <sub>2</sub> | Below objective at facade                                      |
| HSN  | Hunter Street (north)   | Chester           | NO2             | Redevelopment pending                                          |
| ТМ   | Thornton-le-Moors       | Thornton-le-Moors | Benzene         | Below objective, requirement to report on benzene discontinued |

Table 5 Details of non-automatic monitoring sites discontinued prior to 2016

Table 6 Details of non-automatic monitoring sites established for 2016

| Site | Site name                | Town      | Pollut          | Reason for monitoring                                             |
|------|--------------------------|-----------|-----------------|-------------------------------------------------------------------|
| ID   |                          |           | ant             |                                                                   |
| FGS  | Foregate Street          | Chester   | NO <sub>2</sub> | Adjacent to bus stands                                            |
| NIN  | Nicholas St (north)      | Chester   | NO <sub>2</sub> | Residential – adjacent to queuing traffic                         |
| NIS  | Nicholas St (south)      | Chester   | NO <sub>2</sub> | Residential – adjacent to ring road                               |
| WXP  | Wrexham Rd park and ride | Chester   | NO <sub>2</sub> | Baseline prior to large scale development                         |
| LVR  | Love St (residential)    | Chester   | NO <sub>2</sub> | Residential – queuing traffic                                     |
| LVS  | Love St (school)         | Chester   | NO <sub>2</sub> | School – queuing traffic                                          |
| AHH  | Holly House              | Allostock | NO <sub>2</sub> | Residential – baseline prior to commencement of M6 smart motorway |
| AP   | Pine Cottage             | Allostock | NO <sub>2</sub> | Residential – baseline prior to commencement of M6 smart motorway |
| CIN  | City Road (north)        | Chester   | NO <sub>2</sub> | Residential – adjacent to busy road                               |
| CIS  | City Road (south)        | Chester   | NO <sub>2</sub> | Baseline prior to care home development                           |

| Site ID    | Site Type          | Monitoring type | Valid data                                             | Valid data                         | NO₂ annua   | l mean con   | centration µ | g/m <sup>3 (3)</sup> |      |
|------------|--------------------|-----------------|--------------------------------------------------------|------------------------------------|-------------|--------------|--------------|----------------------|------|
|            |                    |                 | capture for<br>monitoring<br>period (%) <sup>(1)</sup> | capture 2016<br>(%) <sup>(2)</sup> | 2012        | 2013         | 2014         | 2015                 | 2016 |
| \//Н       | Roadside           | Automatic       |                                                        | 00                                 | 44.0        | 41 0         | 41 0         | 40.0                 | 40.0 |
|            | I Irban background | Automatic       | 99                                                     | 99                                 | 24.0        | 23.0         | 22.0         | 20.0                 | 22.0 |
| BO         | Poadsido           | Automatic       | 86                                                     | 90<br>86                           | 24.0        | 23.0         | 32.0         | 20.0                 | 22.0 |
|            | I Irban background | Automatic       | 00                                                     | 00                                 | 55.0        | 33.0         | 10.0         | 15.0                 | 29.0 |
|            | Industrial         | Automatic       | 90                                                     | 90                                 |             |              | 19.0         | 15.0                 | 16.0 |
|            | Othor              | Diffusion tubo  | 90                                                     | 90<br>50                           |             |              |              | 10.0                 | 21.5 |
|            | Dunei              | Diffusion tube  | 75                                                     | 50                                 | 11 2        | 26.2         |              |                      | 21.0 |
|            | Roadside           | Diffusion tube  | 15                                                     | 50                                 | 41.3        | 30.2<br>11 0 | 11.2         |                      | 31.2 |
|            | Roadside           | Diffusion tube  |                                                        |                                    |             | 41.5         | 41.3         | 20.0                 |      |
|            | Roadaida           | Diffusion tube  | 02                                                     | 02                                 | 11 E        | 12 0         | 41.0         | 20.0                 | 40.2 |
|            | Ruauside           | Diffusion tube  | 92                                                     | 92                                 | <b>44.3</b> | 43.0         | 41.9         | 30.3                 | 40.2 |
| BJ         | Roadside           | Diffusion tube  | 92                                                     | 92                                 | 37.2        | 39.3         | 38.3         | 37.5                 | 39.0 |
| BIN        | Roadside           | Diffusion tube  |                                                        | 00                                 | 27.4        | 047          | 00.5         | 00 5                 | 00.5 |
| BO         | Roadside           | Diffusion tube  | 83                                                     | 83                                 | 30.9        | 34.7         | 32.5         | 30.5                 | 30.5 |
| BR         | Roadside           | Diffusion tube  |                                                        |                                    | 28.2        |              |              |                      |      |
| <u>C11</u> | Roadside           | Diffusion tube  | 92                                                     | 92                                 | 46.8        | 46.4         | 45.4         | 43.0                 | 43.3 |
| <u>C36</u> | Roadside           | Diffusion tube  | 75                                                     | 75                                 | 55.6        | 55.9         | 54.1         | 50.6                 | 51.5 |
| C75        | Roadside           | Diffusion tube  | 83                                                     | 83                                 | 29.5        | 31.5         | 29.0         | 27.7                 | 30.4 |
| CA         | Roadside           | Diffusion tube  |                                                        |                                    | 40.4        | 35.7         |              |                      |      |
| CC         | Roadside           | Diffusion tube  |                                                        |                                    | 24.2        | 22.9         |              |                      |      |
| CD         | Roadside           | Diffusion tube  |                                                        |                                    | 34.7        | 32.3         |              |                      |      |
| CE         | Roadside           | Diffusion tube  |                                                        |                                    |             | 14.7         | 14.5         |                      |      |
| CFL        | Roadside           | Diffusion tube  | 92                                                     | 92                                 |             | 33.1         | 31.9         | 29.4                 | 31.3 |
| CFU        | Roadside           | Diffusion tube  |                                                        |                                    |             | 27.4         |              |                      |      |
| CIN        | Roadside           | Diffusion tube  | 80                                                     | 33                                 |             |              |              |                      | 29.1 |
| CIS        | Roadside           | Diffusion tube  | 80                                                     | 33                                 |             |              |              |                      | 30.9 |
| CN         | Kerbside           | Diffusion tube  |                                                        |                                    | 30.6        | 29.4         |              |                      |      |
| CP         | Kerbside           | Diffusion tube  |                                                        |                                    | 37.0        | 33.5         |              |                      |      |

#### Table 7 Annual mean NO2 monitoring results

| Site ID | Site Type  | Monitoring type | Valid data                | Valid data                         | NO <sub>2</sub> annual mean concentration $\mu$ g/m <sup>3 (3)</sup> |      |      |      |      |
|---------|------------|-----------------|---------------------------|------------------------------------|----------------------------------------------------------------------|------|------|------|------|
|         |            |                 | capture for<br>monitoring | capture 2016<br>(%) <sup>(2)</sup> | 2012                                                                 | 2012 | 2014 | 2015 | 2016 |
| C)/1    | Poodoido   | Diffusion tubo  | period (%)                |                                    | 2012                                                                 | 2013 | 2014 | 2015 | 2010 |
|         | Roadside   | Diffusion tube  |                           |                                    | 31.0                                                                 | 26.0 |      |      |      |
|         | Roadside   | Diffusion tube  |                           |                                    |                                                                      | 36.9 |      |      |      |
|         | Ruadside   | Diffusion tube  |                           |                                    | 10.4                                                                 | 35.0 |      |      |      |
|         | Rural      | Diffusion tube  |                           |                                    | 12.4                                                                 | 13.7 | 00.7 | 01.0 | 04.0 |
| EB      | Roadside   | Diffusion tube  | 92                        | 92                                 | 36.1                                                                 | 38.1 | 36.7 | 34.2 | 34.8 |
| FB      | Roadside   | Diffusion tube  |                           |                                    | 34.6                                                                 | 32.3 |      |      |      |
| FC      | Roadside   | Diffusion tube  |                           |                                    | 34.5                                                                 | 33.3 |      |      |      |
| FGS     | Roadside   | Diffusion tube  | 92                        | 92                                 |                                                                      |      |      |      | 31.7 |
| FH      | Roadside   | Diffusion tube  | 83                        | 83                                 | 45.5                                                                 | 40.3 | 41.9 | 39.7 | 44.2 |
| FJ      | Roadside   | Diffusion tube  | 92                        | 92                                 | 47.6                                                                 | 44.7 | 42.6 | 41.3 | 42.2 |
| FM      | Roadside   | Diffusion tube  | 92                        | 92                                 | 40.9                                                                 | 36.8 | 36.6 | 32.9 | 36.5 |
| FT      | Roadside   | Diffusion tube  | 83                        | 83                                 |                                                                      |      | 36.3 | 33.9 | 34.9 |
| FV      | Roadside   | Diffusion tube  |                           |                                    |                                                                      | 20.6 | 21.4 | 21.3 |      |
| FW      | Roadside   | Diffusion tube  |                           |                                    |                                                                      | 20.8 | 19.1 |      |      |
| FX      | Kerbside   | Diffusion tube  |                           |                                    | 36.3                                                                 | 37.3 |      |      |      |
| GD      | Roadside   | Diffusion tube  | 75                        | 75                                 | 34.2                                                                 | 37.5 | 34.1 | 32.3 | 33.9 |
| GE      | Roadside   | Diffusion tube  | 92                        | 92                                 |                                                                      |      |      | 27.4 | 24.8 |
| GH      | Roadside   | Diffusion tube  |                           |                                    | 34.3                                                                 |      |      |      |      |
| GI      | Roadside   | Diffusion tube  | 83                        | 83                                 | 34.5                                                                 | 36.8 | 35.4 | 32.6 | 34.8 |
| GR      | Roadside   | Diffusion tube  |                           |                                    | 26.6                                                                 | 26.0 |      |      |      |
| GSW     | Roadside   | Diffusion tube  | 75                        | 75                                 |                                                                      |      |      | 27.5 | 27.8 |
| HB      | Roadside   | Diffusion tube  | 92                        | 92                                 | 32.7                                                                 | 38.5 | 37.7 | 33.6 | 33.7 |
| HC      | Roadside   | Diffusion tube  |                           |                                    | 44.4                                                                 | 43.4 | 42.2 | 35.9 |      |
| HSN     | Roadside   | Diffusion tube  |                           |                                    |                                                                      |      | 36.1 | 32.3 |      |
| HT      | Roadside   | Diffusion tube  |                           |                                    |                                                                      | 23.5 | 22.9 |      |      |
| HW      | Roadside   | Diffusion tube  | 92                        | 92                                 | 40.6                                                                 | 41.8 | 41.2 | 37.8 | 39.9 |
| IC      | Roadside   | Diffusion tube  | 75                        | 75                                 | 40.2                                                                 | 38.2 | 37.1 | 37.3 | 38.5 |
| IS      | Industrial | Diffusion tube  |                           |                                    | 20.8                                                                 | 21.6 |      |      |      |
| KR      | Roadside   | Diffusion tube  | 83                        | 83                                 | 41.0                                                                 | 37.6 | 35.0 | 33.6 | 35.2 |

| Site ID | Site Type | Monitoring type | Valid data                              | Valid data   | <b>NO<sub>2</sub></b> annual mean concentration $\mu$ g/m <sup>3 (3)</sup> |      |      |      |      |
|---------|-----------|-----------------|-----------------------------------------|--------------|----------------------------------------------------------------------------|------|------|------|------|
|         |           |                 | capture for                             | capture 2016 |                                                                            |      |      |      |      |
|         |           |                 | monitoring<br>period (%) <sup>(1)</sup> | (%) 🤄        | 2012                                                                       | 2013 | 2014 | 2015 | 2016 |
| ТН      | Roadside  | Diffusion tube  | 92                                      | 92           | 41.1                                                                       | 43.1 | 38.0 | 37.0 | 38.4 |
| LI2     | Roadside  | Diffusion tube  | 92                                      | 92           | 39.4                                                                       | 38.9 | 37.8 | 35.5 | 39.4 |
| LN      | Roadside  | Diffusion tube  |                                         |              | 30.2                                                                       | 31.0 |      |      |      |
| LP      | Roadside  | Diffusion tube  |                                         |              | 32.6                                                                       | 31.7 |      |      |      |
| LVR     | Roadside  | Diffusion tube  | 75                                      | 75           |                                                                            |      |      |      | 40.8 |
| LVS     | Roadside  | Diffusion tube  | 75                                      | 75           |                                                                            |      |      |      | 39.1 |
| LW      | Roadside  | Diffusion tube  |                                         |              | 37.7                                                                       | 31.0 |      |      |      |
| M15     | Roadside  | Diffusion tube  |                                         |              | 34.3                                                                       | 30.4 |      |      |      |
| M55     | Roadside  | Diffusion tube  |                                         |              | 26.9                                                                       | 25.4 |      |      |      |
| MC      | Roadside  | Diffusion tube  |                                         |              |                                                                            | 20.5 |      |      |      |
| MCC     | Roadside  | Diffusion tube  | 83                                      | 83           |                                                                            |      | 41.8 | 38.1 | 44.5 |
| MN      | Roadside  | Diffusion tube  |                                         |              | 32.6                                                                       | 33.4 |      |      |      |
| MV      | Roadside  | Diffusion tube  |                                         |              | 22.1                                                                       |      |      |      |      |
| NA      | Roadside  | Diffusion tube  |                                         |              | 37.0                                                                       | 33.8 | 31.1 |      |      |
| NB      | Roadside  | Diffusion tube  |                                         |              | 24.6                                                                       | 25.6 |      |      |      |
| NIN     | Roadside  | Diffusion tube  | 92                                      | 92           |                                                                            |      |      |      | 39.1 |
| NIS     | Roadside  | Diffusion tube  | 75                                      | 75           |                                                                            |      |      |      | 22.6 |
| NR      | Roadside  | Diffusion tube  |                                         |              | 24.2                                                                       |      |      |      |      |
| NS      | Roadside  | Diffusion tube  | 83                                      | 83           | 39.4                                                                       | 38.5 | 39.4 | 35.9 | 36.2 |
| NT      | Roadside  | Diffusion tube  |                                         |              | 32.2                                                                       | 32.5 | 28.6 |      |      |
| OB      | Roadside  | Diffusion tube  | 75                                      | 75           | 39.5                                                                       | 47.2 | 43.2 | 40.7 | 41.2 |
| OF      | Roadside  | Diffusion tube  | 92                                      | 92           | 33.8                                                                       | 36.4 | 37.4 | 35.7 | 38.8 |
| OG      | Roadside  | Diffusion tube  |                                         |              | 40.0                                                                       | 43.8 |      |      |      |
| OW      | Roadside  | Diffusion tube  | 83                                      | 83           | 45.7                                                                       | 46.1 | 42.0 | 43.2 | 51.0 |
| PA      | Roadside  | Diffusion tube  | 92                                      | 92           | 38.9                                                                       | 42.2 | 41.8 | 41.1 | 42.3 |
| PC      | Roadside  | Diffusion tube  |                                         |              | 31.9                                                                       | 32.3 |      |      |      |
| PF      | Roadside  | Diffusion tube  |                                         |              | 31.5                                                                       |      |      |      |      |
| PG      | Roadside  | Diffusion tube  | 75                                      | 75           | 47.2                                                                       | 49.5 | 48.0 | 42.2 | 46.9 |
| PM      | Roadside  | Diffusion tube  |                                         |              |                                                                            | 31.6 |      |      |      |

| Site ID | Site Type | Monitoring type | Valid data  | Valid data   | NO <sub>2</sub> annual mean concentration $\mu$ g/m <sup>3 (3)</sup> |      |      |      |      |
|---------|-----------|-----------------|-------------|--------------|----------------------------------------------------------------------|------|------|------|------|
|         |           |                 | capture for | capture 2016 |                                                                      |      |      |      |      |
|         |           |                 | monitoring  | (%) (²)      | 2012                                                                 | 2012 | 2014 | 2015 | 2016 |
|         | Deedeide  | Diffusion tub s | period (%)  |              | 2012                                                                 | 2013 | 2014 | 2015 | 2010 |
|         | Roadside  | Diffusion tube  |             |              | 31.5                                                                 | 07.4 |      |      |      |
| QS      | Roadside  | Diffusion tube  |             |              | 41.5                                                                 | 37.1 | 30.4 | 26.8 |      |
| RH      | Kerbside  | Diffusion tube  |             |              | 30.2                                                                 |      |      |      |      |
| RL      | Roadside  | Diffusion tube  |             |              | 30.6                                                                 | 30.1 |      |      | ļ    |
| RM      | Roadside  | Diffusion tube  | 83          | 83           | 42.8                                                                 | 46.8 | 45.6 | 39.9 | 43.1 |
| RR      | Roadside  | Diffusion tube  | 92          | 92           | 43.0                                                                 | 42.2 | 42.1 | 39.1 | 39.9 |
| RS      | Roadside  | Diffusion tube  |             |              | 31.2                                                                 |      |      |      | l    |
| SA      | Roadside  | Diffusion tube  | 92          | 92           | 40.8                                                                 | 43.6 | 42.1 | 38.5 | 39.8 |
| SB      | Roadside  | Diffusion tube  |             |              | 36.9                                                                 | 34.1 | 31.8 |      |      |
| SCN     | Roadside  | Diffusion tube  |             |              |                                                                      | 26.8 | 22.5 |      |      |
| SCS     | Roadside  | Diffusion tube  |             |              |                                                                      | 34.6 | 34.5 | 30.8 |      |
| SL      | Roadside  | Diffusion tube  |             |              |                                                                      | 17.0 | 17.6 |      |      |
| SM      | Roadside  | Diffusion tube  | 75          | 75           | 30.8                                                                 | 30.1 | 30.9 | 29.5 | 32.1 |
| SR      | Roadside  | Diffusion tube  | 83          | 83           | 39.1                                                                 | 39.8 | 38.4 | 35.7 | 36.5 |
| SV      | Roadside  | Diffusion tube  |             |              | 26.0                                                                 |      |      |      |      |
| SZ      | Roadside  | Diffusion tube  | 83          | 83           | 39.6                                                                 | 41.8 | 39.0 | 36.8 | 36.3 |
| T25     | Roadside  | Diffusion tube  |             |              | 32.0                                                                 | 32.1 | 30.6 |      |      |
| T44     | Roadside  | Diffusion tube  | 92          | 92           | 46.4                                                                 | 48.0 | 46.1 | 41.5 | 42.8 |
| T6      | Roadside  | Diffusion tube  | 83          | 83           | 57.9                                                                 | 58.4 | 53.0 | 49.1 | 50.3 |
| T67     | Roadside  | Diffusion tube  |             |              | 33.2                                                                 | 33.0 |      |      |      |
| T97     | Roadside  | Diffusion tube  |             |              | 34.2                                                                 | 33.8 |      |      |      |
| ТВ      | Roadside  | Diffusion tube  | 75          | 75           | 40.8                                                                 | 42.9 | 41.2 | 40.1 | 38.7 |
| TG      | Roadside  | Diffusion tube  |             |              |                                                                      | 32.1 | 32.8 | 31.7 |      |
| TH      | Roadside  | Diffusion tube  |             |              | 26.4                                                                 |      |      |      |      |
| UN      | Roadside  | Diffusion tube  | 92          | 92           | 40.2                                                                 | 43.5 | 41.1 | 38.5 | 40.1 |
| UV      | Roadside  | Diffusion tube  |             |              | 23.9                                                                 |      |      |      |      |
| WC      | Roadside  | Diffusion tube  |             |              | 34.2                                                                 |      |      |      |      |
| WG      | Roadside  | Diffusion tube  | 83          | 83           | 51.6                                                                 | 47.1 | 44.9 | 41.3 | 43.5 |
| WGW     | Roadside  | Diffusion tube  | 92          | 92           |                                                                      | 44.8 | 38.8 | 33.6 | 37.1 |

| Site ID | Site Type | Monitoring type | Valid data                                             | Valid data                         | NO <sub>2</sub> annua | l mean con | centration µ | g/m <sup>3 (3)</sup> |      |
|---------|-----------|-----------------|--------------------------------------------------------|------------------------------------|-----------------------|------------|--------------|----------------------|------|
|         |           |                 | capture for<br>monitoring<br>period (%) <sup>(1)</sup> | capture 2016<br>(%) <sup>(2)</sup> | 2012                  | 2013       | 2014         | 2015                 | 2016 |
| WH av   | Roadside  | Diffusion tube  | 92                                                     | 92                                 | 38.2                  | 36.6       | 36.3         | 34.7                 | 34.4 |
| WS      | Roadside  | Diffusion tube  |                                                        |                                    | 39.8                  |            |              |                      |      |
| WT      | Roadside  | Diffusion tube  |                                                        |                                    |                       | 43.2       | 39.7         | 39.5                 |      |
| WV      | Kerbside  | Diffusion tube  |                                                        |                                    | 33.2                  | 32.1       |              |                      |      |
| WW      | Roadside  | Diffusion tube  |                                                        |                                    | 35.7                  | 33.7       | 32.1         | 28.6                 |      |
| WXP     | Roadside  | Diffusion tube  | 92                                                     | 92                                 |                       |            |              |                      | 20.1 |

 $\boxtimes$  Diffusion tube data has been bias corrected

 $\boxtimes$  Annualisation has been conducted where data capture is <75%

Data has not been distance corrected for relevant exposure. See Table 12 for these data.

#### Notes:

Exceedances of the NO<sub>2</sub> annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

 $NO_2$  annual means exceeding  $60\mu g/m^3$ , indicating a potential exceedance of the  $NO_2$  one-hour mean objective are shown in **bold and underlined**.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for six months, the maximum data capture for the full calendar year is 50%).

(3) Means for diffusion tubes have been corrected for bias. If valid data capture for the full calendar year is less than 75% means have been annualised as per boxes 7.9 and 7.10 in LAQM.TG16. See Appendix C for details.

| Site  | Site type        | Monitoring | Valid data capture          | Valid data            | Hourly means exceedances of 200µg/m <sup>3 (3)</sup> |      |          |      |      |  |  |  |
|-------|------------------|------------|-----------------------------|-----------------------|------------------------------------------------------|------|----------|------|------|--|--|--|
| ID    |                  | type       | for period of               | capture               |                                                      |      |          |      |      |  |  |  |
|       |                  |            | monitoring % <sup>(1)</sup> | 2016 % <sup>(2)</sup> | 2012                                                 | 2013 | 2014     | 2015 | 2016 |  |  |  |
| WH    | Roadside         | Automatic  | 99.0                        | 99.0                  | 0                                                    | 0    | 0        | 0    | 0    |  |  |  |
| LR-JG | Urban background | Automatic  | 89.6                        | 89.6                  | 0                                                    | 0    | 0        | 0    | 0    |  |  |  |
| BO    | Roadside         | Automatic  | 85.6                        | 85.6                  | 0 (120)                                              | 0    | 0        | 0    | 0    |  |  |  |
| FMH   | Urban background | Automatic  | 96.2                        | 96.2                  |                                                      |      | 0 (99.8) | 0    | 0    |  |  |  |
| TLP   | Industrial       | Automatic  | 95.6                        | 95.6                  |                                                      |      |          | 0    | 0    |  |  |  |

Table 8 Hourly mean NO<sub>2</sub> monitoring results

Notes: Exceedances of the NO<sub>2</sub> hourly mean objective  $(200 \mu g/m^3 \text{ not to be exceeded more than 18 times/year)}$  are shown in **bold**.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for six months, the maximum data capture for the full calendar year is 50%).

(3) If the period of valid data was less than 85%, the 99.8<sup>th</sup> percentile of hourly means is provided in brackets.

#### Table 9 Annual mean PM<sub>10</sub> monitoring results

| Site ID | Site type        | Valid data capture        | Valid data                | $PM_{10}$ annual mean concentration (µg/m <sup>3</sup> ) <sup>(3)</sup> |      |      |      |      |  |
|---------|------------------|---------------------------|---------------------------|-------------------------------------------------------------------------|------|------|------|------|--|
| Sile ID | Site type        | period (%) <sup>(1)</sup> | <b>(%)</b> <sup>(2)</sup> | 2012                                                                    | 2013 | 2014 | 2015 | 2016 |  |
| LR      | Urban background | 89.9                      | 89.9                      | 16.8                                                                    | 17.8 | 16.0 | 13.0 | 11.8 |  |
| FMH     | Urban background | 96.8                      | 96.8                      |                                                                         |      | 15.0 | 15.0 | 14.0 |  |
| TLP     | Industrial       | 97.1                      | 97.1                      |                                                                         |      |      | 15.0 | 16.0 |  |

 $\boxtimes$  Annualisation has been conducted where data capture is <75%

Notes: Exceedances of the  $PM_{10}$  annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the calendar year (e.g. if monitoring was carried out for six months, the maximum data capture for the full calendar year is 50%).

(3) Where valid data capture for the full calendar year is less than 75% means have been annualised, as per technical guidance LAQM.TG16. See Appendix C for details.

| Table | 10 | 24-hour | mean | $PM_{10}$ | monitoring | results |
|-------|----|---------|------|-----------|------------|---------|
|       |    |         |      | 10        |            |         |

| Site ID | Site type        | Valid data capture for | Valid data capture      | PM <sub>10</sub> 24- | PM <sub>10</sub> 24-hour means > 50μg/m <sup>3 (3)</sup> |      |        |      |  |  |  |
|---------|------------------|------------------------|-------------------------|----------------------|----------------------------------------------------------|------|--------|------|--|--|--|
|         | one type         |                        | 2016 (%) <sup>(2)</sup> | 2012                 | 2013                                                     | 2014 | 2015   | 2016 |  |  |  |
| LR      | Urban background | 89.9                   | 89.9                    | 7                    | 6                                                        | 1    | 0      | 0    |  |  |  |
| FMH     | Urban background | 96.8                   | 96.8                    |                      |                                                          | 0    | 1      | 0    |  |  |  |
| TLP     | Industrial       | 97.1                   | 97.1                    |                      |                                                          |      | 0 (22) | 0    |  |  |  |

Notes: Exceedances of the PM<sub>10</sub> 24-hour mean objective (50µg/m<sup>3</sup> not to be exceeded more than 35 times/year) are shown in **bold**.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for six months, the maximum data capture for the full calendar year is 50%).

(3) If the period of valid data is less than 85%, the 90.4<sup>th</sup> percentile of 24-hour means is provided in brackets.

#### Table 11 SO<sub>2</sub> monitoring results

| Site ID | Site type        | Valid data                                             | Valid data                         | Number of exceedances 2016 (percentile in bracket) <sup>(3)</sup> |                                              |                                  |  |  |  |  |
|---------|------------------|--------------------------------------------------------|------------------------------------|-------------------------------------------------------------------|----------------------------------------------|----------------------------------|--|--|--|--|
|         |                  | capture for<br>monitoring<br>period (%) <sup>(1)</sup> | capture<br>2016 (%) <sup>(2)</sup> | 15-minute objective<br>(266 µg/m³)                                | Hourly objective<br>(350 µg/m <sup>3</sup> ) | 24-hour objective<br>(125 μg/m³) |  |  |  |  |
| LR-JG   | Urban background | 90.7                                                   | 90.7                               | 0                                                                 | 0                                            | 0                                |  |  |  |  |
| FMH     | Urban background | 93.4                                                   | 93.4                               | 0                                                                 | 0                                            | 0                                |  |  |  |  |
| TLP     | Industrial       | 95.8                                                   | 95.8                               | 70                                                                | 4                                            | 1                                |  |  |  |  |
| ELT     | Industrial       | 96.0                                                   | 96.0                               | 1                                                                 | 0                                            | 0                                |  |  |  |  |

Notes: exceedances of the SO<sub>2</sub> objectives are shown in **bold** (15-minute mean = 35 allowed a year, one-hour mean = 24 a year, 24-hour mean = three a year)

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the calendar year (e.g. if monitoring was carried out for six months, the maximum data capture for the full calendar year is 50%)

(3) If the period of valid data is less than 85%, the relevant percentiles are provided in brackets.

## Appendix B: Full monthly diffusion tube results for 2016

Table 12 NO<sub>2</sub> monthly diffusion tube results – 2016

 $NO_2$  mean concentrations (µg/m<sup>3</sup>) Site ID Annual mean (4) November<sup>(3)</sup> September Bias Distance Raw December February data adjusted corrected January October August March (2)(factor = June April July May 0.92) and annualised<sup>(1)</sup> AHH 29.1 missing 20.8 12.3 19.6 19.1 28.2 void 21.5 21.5 21.5 ---AP 32.2 void 34.6 31.4 32.9 25.0 void 31.9 31.3 31.2 31.2 ---BE 47.9 46.6 47.2 45.6 42.0 43.6 36.8 35.5 42.1 46.0 void 47.2 43.7 40.2 39.2 BJ 39.6 44.7 53.2 47.1 42.6 42.9 33.8 35.6 41.4 42.2 43.6 42.4 39.0 39.0 void BO 33.9 42.5 38.9 36.2 32.7 28.1 24.0 28.2 26.9 missina void 40.7 33.2 30.5 30.5 C11 43.7 57.2 44.2 47.5 38.7 39.0 43.3 43.3 57.1 48.0 34.1 55.9 void 52.4 47.1 56.0 51.5 49.2 C36 51.6 68.1 void 66.1 55.4 46.8 51.8 51.7 void 49.2 void 62.8 C75 31.3 37.9 34.8 36.6 34.1 32.2 21.9 27.2 void 37.4 36.7 33.0 30.4 30.4 void CFL 28.5 37.2 31.6 38.6 31.4 34.5 28.1 31.0 34.8 39.7 39.4 34.1 31.3 26.5 void CIN 25.9 29.0 32.0 void 39.6 31.6 29.1 27.9 -------CIS 27.2 26.8 38.3 42.2 33.6 30.9 30.9 -----void -34.8 EB 46.2 37.5 34.6 30.6 30.2 32.4 32.3 36.4 37.8 46.7 47.8 void 41.0 34.8 FGS 34.5<sup>(5)</sup> 42.8 51.4 43.2 47.5 49.3 38.7 13.7 15.6 18.4 29.0 29.5 31.7 31.7 void FH 51.5 44.2 42.2 42.8 44.2 35.0 40.3 67.2 54.0 void 59.2 48.1 44.2 43.7 missing FJ 45.2 52.9 47.8 47.4 41.7 42.4 39.5 41.2 46.3 47.9 void 52.2 45.9 42.2 41.0 FM 37.8 45.2 41.2 36.9 38.9 42.7 28.2 30.2 34.9 52.1 48.0 39.6 36.5 35.9 missina FT 45.5 39.4 32.5 36.4 34.5 34.0 35.6 40.7 39.0 42.1 38.0 34.9 34.9 missina void 33.9 GD 43.4 35.2 36.9 36.2 45.0 34.7 void 24.5 26.8 missing 40.1 void 45.9 33.9 GE 32.0 35.9 33.6 28.0 24.7 21.5 17.6 18.4 27.7 void 35.8 26.9 24.8 24.6 21.1 GI 44.6 43.2 47.6 35.3 29.5 37.0 28.5 missing 31.8 39.3 void 41.3 37.8 34.8 34.8 GSW 35.4 37.2 35.6 31.3 28.6 missina 19.9 30.7 34.4 30.2 27.8 26.3 18.7 missina void HB 39.1 41.4 44.5 33.0 28.8 28.5 30.8 41.3 49.3 36.6 33.7 29.4 31.2 34.5 void

| Site | NO <sub>2</sub> mea | an conce | ntrations | (µg/m³) |         |         |         |         |           |         |          |          |             |                                                                         |                              |
|------|---------------------|----------|-----------|---------|---------|---------|---------|---------|-----------|---------|----------|----------|-------------|-------------------------------------------------------------------------|------------------------------|
|      |                     |          |           |         |         |         |         |         |           |         | 3)       |          | Annual n    | nean <sup>(4)</sup>                                                     |                              |
|      | January             | February | March     | April   | Мау     | June    | July    | August  | September | October | November | December | Raw<br>data | Bias<br>adjusted<br>(factor =<br>0.92) and<br>annualised <sup>(1)</sup> | Distance<br>corrected<br>(2) |
| HW   | 43.3                | 48.8     | 53.4      | 41.7    | 41.9    | 40.0    | 31.7    | 33.2    | 41.7      | 53.2    | void     | 48.3     | 43.4        | 39.9                                                                    | 37.9                         |
| IC   | 42.7                | 49.2     | 52.0      | 42.9    | 38.7    | missing | 33.4    | missing | 35.7      | 37.2    | void     | 44.8     | 41.8        | 38.5                                                                    | 34.8                         |
| KR   | 38.3                | 41.5     | 44.4      | 40.1    | 34.6    | 33.7    | 29.4    | 35.2    | 39.8      | 45.7    | void     | missing  | 38.3        | 35.2                                                                    | 29.9                         |
| LH   | 34.0                | 49.4     | 45.4      | 46.7    | 41.1    | 45.1    | 37.0    | 35.3    | 41.4      | 41.8    | void     | 42.1     | 41.7        | 38.4                                                                    | 33.9                         |
| LI2  | 41.0                | 45.9     | 44.4      | 45.7    | 37.3    | 42.2    | 34.1    | 34.7    | 47.0      | 46.7    | void     | 52.5     | 42.9        | 39.4                                                                    | 31.5                         |
| LVR  | 49.4                | 52.1     | 46.3      | 48.6    | missing | 42.0    | missing | 33.7    | 40.7      | 41.5    | void     | 45.3     | 44.4        | 40.8                                                                    | 40.8                         |
| LVS  | 40.8                | 49.8     | 45.9      | 40.2    | missing | missing | 40.4    | 35.5    | 37.5      | 44.6    | void     | 48.2     | 42.5        | 39.1                                                                    | 39.1                         |
| MCC  | 45.1                | 51.6     | 57.9      | 51.4    | 47.0    | 41.6    | 41.5    | 41.6    | void      | 52.8    | void     | 53.6     | 48.4        | 44.5                                                                    | 43.4                         |
| NIN  | 42.1                | 52.1     | 44.2      | 47.7    | 41.2    | 41.5    | 36.2    | 35.1    | 38.7      | 40.6    | void     | 48.3     | 42.5        | 39.1                                                                    | 39.1                         |
| NIS  | missing             | 30.1     | 28.7      | 22.1    | 24.0    | 25.3    | 19.7    | 19.4    | 22.3      | 29.8    | void     | missing  | 24.6        | 22.6                                                                    | 22.6                         |
| NS   | 34.9                | 42.1     | 40.8      | 38.6    | 38.2    | 36.2    | missing | 31.4    | 38.0      | 43.2    | void     | 49.9     | 39.3        | 36.2                                                                    | 34.2                         |
| OB   | 31.6                | void     | 59.3      | 53.2    | 53.6    | 48.4    | 34.3    | 36.9    | 40.5      | missing | void     | 45.0     | 44.8        | 41.2                                                                    | 39.9                         |
| OF   | 44.4                | 45.8     | 47.1      | 43.4    | 39.1    | 37.6    | 35.5    | 44.0    | 40.7      | 43.7    | void     | 42.8     | 42.2        | 38.8                                                                    | 38.8                         |
| OW   | 60.8                | 63.4     | 64.4      | 50.6    | 48.2    | 45.6    | 49.4    | missing | 61.1      | 48.8    | void     | 62.1     | 55.4        | 51.0                                                                    | 45.7                         |
| PA   | 52.0                | 52.1     | 48.4      | 43.6    | 40.3    | 42.2    | 37.2    | 42.6    | 49.2      | 48.7    | void     | 50.1     | 46.0        | 42.3                                                                    | 35.2                         |
| PG   | 53.3                | 58.6     | missing   | missing | 48.2    | 49.0    | 41.6    | 35.6    | 59.6      | 52.4    | void     | 60.3     | 51.0        | 46.9                                                                    | 46.9                         |
| RM   | 48.4                | 58.9     | 53.6      | 50.7    | void    | 42.4    | 33.0    | 35.5    | 41.4      | 58.1    | void     | 46.9     | 46.9        | 43.1                                                                    | 43.1                         |
| RR   | 43.0                | 50.1     | 44.3      | 46.3    | 42.2    | 44.1    | 36.6    | 32.4    | 42.8      | 45.3    | void     | 49.5     | 43.3        | 39.9                                                                    | 35.5                         |
| SA   | 47.6                | 53.8     | 42.0      | 33.3    | 40.7    | 40.5    | 32.8    | 35.0    | 44.3      | 49.5    | void     | 56.0     | 43.2        | 39.8                                                                    | 39.8                         |
| SM   | 34.9                | 38.5     | 36.2      | 33.5    | 32.3    | 28.4    | missing | missing | 30.2      | 38.5    | void     | 41.3     | 34.9        | 32.1                                                                    | 32.1                         |
| SR   | 37.4                | 44.2     | 39.1      | 42.1    | 39.1    | 39.3    | 32.7    | void    | 40.4      | 40.2    | void     | 42.7     | 39.7        | 36.5                                                                    | 36.5                         |
| SZ   | 35.4                | 49.7     | 46.0      | 45.4    | 41.0    | 39.4    | 30.4    | 32.9    | 32.9      | missing | void     | 41.3     | 39.4        | 36.3                                                                    | 35.3                         |
| T44  | 48.1                | 54.4     | 48.8      | 45.1    | 38.7    | 41.4    | 36.6    | 36.5    | 44.9      | 55.0    | void     | 62.3     | 46.5        | 42.8                                                                    | 34.6                         |
| T6   | 58.7                | 61.8     | 61.9      | 50.3    | void    | 45.3    | 43.0    | 49.6    | 58.1      | 51.9    | void     | 66.5     | 54.7        | 50.3                                                                    | 50.3                         |
| ТВ   | 44.9                | missing  | 49.6      | 40.9    | 37.0    | 37.2    | 34.2    | missing | 41.1      | 44.9    | missing  | 49.1     | 42.1        | 38.7                                                                    | 34.0                         |
| UN   | 42.3                | 48.9     | 45.5      | 45.9    | 42.0    | 39.7    | 30.1    | 36.0    | 44.2      | 51.8    | void     | 52.9     | 43.6        | 40.1                                                                    | 40.1                         |
| WG   | 39.6                | void     | 49.6      | 56.2    | 46.8    | 52.9    | 38.1    | 36.9    | 39.0      | 58.8    | void     | 55.2     | 47.3        | 43.5                                                                    | 43.5                         |

| Site | NO <sub>2</sub> mea | NO <sub>2</sub> mean concentrations (µg/m <sup>3</sup> ) |       |       |      |      |      |        |           |         |                         |          |             |                                                                         |                              |
|------|---------------------|----------------------------------------------------------|-------|-------|------|------|------|--------|-----------|---------|-------------------------|----------|-------------|-------------------------------------------------------------------------|------------------------------|
| ID   |                     |                                                          |       |       |      |      |      |        |           |         |                         |          | Annual n    | nean <sup>(4)</sup>                                                     |                              |
|      | January             | February                                                 | March | April | May  | June | July | August | September | October | November <sup>(3)</sup> | December | Raw<br>data | Bias<br>adjusted<br>(factor =<br>0.92) and<br>annualised <sup>(1)</sup> | Distance<br>corrected<br>(2) |
| WGW  | 32.7                | 39.8                                                     | 44.9  | 40.2  | 47.0 | 43.7 | 33.7 | 32.4   | 36.3      | 50.9    | void                    | 42.0     | 40.3        | 37.1                                                                    | 37.1                         |
| WXP  | 23.7                | 24.4                                                     | 24.6  | 20.6  | 20.5 | 22.0 | 13.8 | 14.0   | 19.3      | 26.8    | void                    | 31.0     | 21.9        | 20.1                                                                    | 20.1                         |
| WH   | 36.8                | 42.5                                                     | 38.3  | 36.6  | 37.2 | 38.2 | 30.0 | 30.7   | 36.4      | 39.9    | void                    | 45.0     | 37.4        | 34.4                                                                    | 34.4                         |

☑ Local bias adjustment factor used

 $\boxtimes$  Annualisation has been conducted where data capture is <75%

 $\boxtimes$  If applicable, all data has been distance corrected for relevant exposure

#### Notes:

Exceedances of the NO<sub>2</sub> annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

NO<sub>2</sub> annual means exceeding 60µg/m<sup>3</sup>, indicating a potential exceedance of the NO<sub>2</sub> one-hour mean objective are shown in **bold and underlined**.

(1) See Appendix C for details on bias adjustment and annualisation.

(2) Distance corrected to nearest relevant public exposure.

(3) November's tubes had been exposed to unrefrigerated room temperatures for three days prior to exposure due to a storage error upon delivery. As this is contrary to good practice advice received from the tube laboratory, results from this month have been discounted

(4) Data capture for all tube locations was nine months out of 12 (75%) or above, apart from sites AHH and AP (50.0%), and CIN and CIS (33.3%). Annualisation corrections have been made to the raw annual mean data for these four sites prior to bias adjustment and/or distance correction.

(5) Between January and the end of June, this location was a bus stop on a road busy with buses. The mean for January - June is 45.5µg/m<sup>3</sup>. Between July and the end of the year, major roadworks meant that no traffic came along this part of the highway. The mean for July - December is 21.2µg/m<sup>3</sup>.

## **Appendix C: Supporting technical information**

#### C.1 New developments

Planning permission was granted on appeal for 77-room student accommodation on Hunter Street, Chester, that had a significant facade on St Martin's Way, in June 2016. Residential rooms were removed from the initial plans for the ground floor in order to reduce residents' exposure to NO<sub>2</sub> from on St Martin's Way.

Planning permission was granted for three two-megawatt combined heat and power (CHP) units, powered by natural gas, to replace existing oil-fired heating at CF Fertilisers, Grinsome Road, Ince in October 2016. Combustion processes at this site are already regulated by the Environment Agency via extant permits issued as per the Environmental Permitting (England and Wales) Regulations 2016, and this development will be regulated under the same regime.

Monitoring commenced at location CIS in August 2016 in order to establish background NO<sub>2</sub> concentrations in the area prior to commencement of the approved development of a residential care home.

#### C.2 Detailed studies

Prior to declaration of the AQMA in Thornton-le-Moors and the Chester city centre AQMA, detailed modelling studies were carried out by consultants, Cerc and Bureau Veritas respectively. Also, the consultancy Atkins was appointed for a detailed study in support of the AQAP for Frodsham. The reports are available from the Council's website at www.cheshirewestandchester.gov.uk/aqmanagement

#### C.3 Air quality action plans

Copies of the Council's AQAPs for Ellesmere Port and Frodsham are available at: www.cheshirewestandchester.gov.uk/aqmanagement

The AQAP for Thornton-le-Moors is currently in its public consultation phase (available from the consultations section of the Council website) and the final version should be completed in the spring of 2018.

An AQAP for Chester city centre needs to be prepared and the intention is to have the draft document finalised by June 2018.

#### C.4 Data ratification, bias adjustments and distance corrections

#### C.4.1 Automatic monitoring

In-house staff perform fortnightly span and zero calibrations on the chemiluminescent analysers at the BO and WH roadside sites, and four-weekly span and zero calibrations on the remaining chemiluminescent and UV-fluorescent analysers, using BOC spectra-seal certified gas standards. The resultant span and offset values are used in the ratification of datasets. Automated internal zero checks are run overnight daily. Data from different sites is compared on a regular basis for the purposes of QA/QC. Data management and ratification is performed by an independent contractor, AQDM Ltd. This includes production of weekly, quarterly and annual summaries as well as ad hoc notifications of any exceedance episodes where necessary. The ratification process also involves comparison against national network sites to identify regional patterns and trends. In 2016 the analysers were serviced and calibrated at six-monthly intervals by Easy Technical Services Ltd (LR and LR-JG) and Enviro Technology Services plc (all other sites).

#### C.4.2 Particulate matter monitoring adjustment

PM<sub>10</sub> monitoring data recorded by the BAM analyser based at Thornton-le-Moors (TLP) has been adjusted by the factor (0.833) recommended in the UK equivalence programme for monitoring of particulate matter report. The volatile correction model (VCM) was used to correct TEOM monitoring data. The VCM adjustment factors applied to the monitoring data are: 1.27 for Frodsham and 1.34 for Ellesmere Port.

#### C.4.3 Short-term to long-term data adjustment

Monitoring studies should ideally be in situ for at least a year in order to compare the results against the annual mean objectives. Monitoring sites with less than nine months' worth of data should be annualised using short-term to long-term adjustments as set out in section 7.171 of LAQM.TG16. Just four sites; AHH and AP in Allostock, and CIN and CIS in Chester required annualisation in 2016. The factor (Ra) shown in Table 13 has been applied to the results for AHH in Allostock, the factor shown in

Table 14 has been applied to the results for AP in Allostock, and the factor shown in Table 15 has been applied to the results for CIN and CIS in Chester. The annualised and subsequently bias-adjusted results are shown in Table 12.

| Site         | Site type  | Annual mean<br>2016 (Am) | Six-month period mean<br>June - October and | Ratio<br>(Am/Pm) |
|--------------|------------|--------------------------|---------------------------------------------|------------------|
|              |            |                          | December 2016 (Pm)                          | 、 ,              |
| Liverpool    | Urban      |                          |                                             |                  |
| Speke        | background | 23.0                     | 20.5                                        | 1.122            |
| Stoke centre | Urban      |                          |                                             |                  |
|              | background | 27.7                     | 25.0                                        | 1.106            |
| Warrington   | Background |                          |                                             |                  |
| _            | _          | 25.0                     | 22.5                                        | 1.113            |
| Wirral       | Urban      |                          |                                             |                  |
| (Tranmere)   | background | 22.1                     | 21.8                                        | 1.016            |
|              |            |                          | Average (Ra)                                | 1.089            |

Table 13 Short-term to long-term adjustment 2016 (location AHH)
Image: Comparison of the state of the

Table 14 Short-term to long-term adjustment 2016 (location AP)

| Site         | Site type  | Annual mean | Six-month period mean   | Ratio   |
|--------------|------------|-------------|-------------------------|---------|
|              |            | 2016 (Am)   | May, July - October and | (Am/Pm) |
|              |            |             | December 2016 (Pm)      |         |
| Liverpool    | Urban      |             |                         |         |
| Speke        | background | 23.0        | 20.8                    | 1.106   |
| Stoke centre | Urban      |             |                         |         |
|              | background | 27.7        | 24.8                    | 1.117   |
| Warrington   | Background |             |                         |         |
| _            |            | 25.0        | 22.8                    | 1.098   |
| Wirral       | Urban      |             |                         |         |
| (Tranmere)   | background | 22.1        | 21.9                    | 1.013   |
|              |            |             | Average (Ra)            | 1.084   |

| Table 15 Short-term to | long-term adjustment | 2016 (locations | CIN and CIS) |
|------------------------|----------------------|-----------------|--------------|
|------------------------|----------------------|-----------------|--------------|

| Site         | Site type  | Annual mean<br>2016 (Am) | Four-month period mean<br>August - October and<br>December 2016 (Pm) | Ratio<br>(Am/Pm) |
|--------------|------------|--------------------------|----------------------------------------------------------------------|------------------|
| Liverpool    | Urban      |                          |                                                                      |                  |
| Speke        | background | 23.0                     | 22.6                                                                 | 1.020            |
| Stoke centre | Urban      |                          |                                                                      |                  |
|              | background | 27.7                     | 26.6                                                                 | 1.042            |
| Warrington   | Background | 05.0                     | 04.0                                                                 | 4 000            |
|              |            | 25.0                     | 24.2                                                                 | 1.033            |
| Wirral       | Urban      |                          |                                                                      |                  |
| (Tranmere)   | background | 22.1                     | 24.5                                                                 | 0.905            |
|              |            |                          | Average (Ra)                                                         | 1.000            |

#### C.4.4 Diffusion tube bias adjustment factors

A triplicate set of diffusion tubes is collocated with the sampling inlet of the real-time analyser WH on Whitby Road, Ellesmere Port. Data from this exercise is used for checking diffusion tube precision and accuracy against real-time results in both a local comparison and to contribute to the national bias adjustment programme. Bias adjustment factors derived from collocation studies undertaken at various locations across the country are available on the Defra website.

Results from 32 national collocation studies, which use the 20 percent triethanolamine (TEA) in water preparation are shown in Table 16 below. The national bias adjustment factor for 2016 is 0.92. The local comparison of diffusion tubes against the real-time data is shown in Table 17, below – the local bias adjustment factor for 2016 is 0.99. Clearly, applying the national bias adjustment factor will reduce the mean and applying the local factor will also reduce the mean, but by a lesser margin, so choice of which factor to apply could have a significant bearing on whether a site complies with the objective or not.

#### C.4.5 Discussion of choice of factor to use

The overall accuracy and precision of the local study was good, as was real-time data capture. There were, however, two periods of poor precision for the tubes triplicate and one period in which two tubes were missing. The monitoring station WH is situated within a street canyon so the bias adjustment may not be applicable to sites with a more open aspect. Taking these points and the factors stated in section 7.175 of LAQM.TG16 into account, it has been decided to use the national bias adjustment factor (0.92) for the adjustment of all diffusion tube data as it is likely to be more statistically reliable. It should be noted, however, that this approach may underestimate the concentrations at some sites. At WH, for example, the real-time result was  $40\mu$ g/m<sup>3</sup> and the locally adjusted diffusion tube result would have been  $37.1\mu$ g/m<sup>3</sup>. There may therefore have been merit therefore to use the local factor for sites with canyon-like characteristics and the national factor at the remainder.

#### C.4.6 Distance Correction

Distance corrections, using version 4.1 of the Bureau Veritas 'NO<sub>2</sub> fall-off with distance calculator', have been applied to the bias-adjusted annual means for the following diffusion tube results: BE, C36, CFL, CIN, FH, FJ, FM, GE, GSW, HB, HW, IC, KR, LH, LI2, MCC, NS, OB, OW, PA, RR, SZ, T44 and TB. The final results are shown in Table 12.

#### Table 16 National diffusion tube bias adjustment factor (v0917)

| Analysis | Method           | Year | Site type  | Local authority              | Length of      | Tube mean    | Auto mean   | Bias (%) | Tube      | Bias factor |
|----------|------------------|------|------------|------------------------------|----------------|--------------|-------------|----------|-----------|-------------|
| by       |                  |      |            |                              | study (months) | (Dm) (µg/m³) | (Cm)(µg/m³) |          | precision | (Cm/Dm)     |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Gateshead                    | 12             | 29           | 26          | 10.5%    | Good      | 0.90        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Gateshead                    | 11             | 35           | 37          | -6.0%    | Good      | 1.06        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Gateshead                    | 12             | 37           | 31          | 19.0%    | Good      | 0.84        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Wokingham                    | 11             | 45           | 41          | 9.0%     | Good      | 0.92        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Wokingham                    | 11             | 37           | 34          | 9.5%     | Good      | 0.91        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Cheshire West and Chester    | 12             | 37           | 39          | -5.3%    | Good      | 1.06        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Thurrock                     | 12             | 29           | 26          | 11.0%    | Good      | 0.90        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | King's Lynn and West Norfolk | 11             | 30           | 25          | 18.2%    | Good      | 0.85        |
| Gradko   | 20% TEA in water | 2016 | Urban      | Eastleigh                    | 11             | 29           | 30          | -4.7%    | Good      | 1.05        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Eastleigh                    | 12             | 44           | 42          | 2.9%     | Good      | 0.97        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Brighton and Hove            | 12             | 52           | 48          | 8.8%     | Good      | 0.92        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Eastleigh                    | 11             | 29           | 37          | -22.0%   | Good      | 1.28        |
| Gradko   | 20% TEA in water | 2016 | Kerbside   | Marylebone intercomparison   | 12             | 99           | 79          | 25.2%    | Good      | 0.80        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Monmouthshire County         | 11             | 39           | 34          | 16.6%    | Good      | 0.86        |
| Gradko   | 20% TEA in Water | 2016 | Roadside   | Preston                      | 10             | 30           | 27          | 10.0%    | Good      | 0.91        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Dudley                       | 12             | 37           | 34          | 11.0%    | Good      | 0.90        |
| Gradko   | 20% TEA in water | 2016 | Urban      | Dudley                       | 12             | 26           | 22          | 18.6%    | Good      | 0.84        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Dudley                       | 11             | 43           | 38          | 12.4%    | Good      | 0.89        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Dudley                       | 12             | 51           | 54          | -5.6%    | Good      | 1.06        |
| Gradko   | 20% TEA in water | 2016 | Background | Waltham Forest               | 12             | 31           | 30          | 2.3%     | Good      | 0.98        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Nottingham                   | 12             | 37           | 39          | -5.4%    | Good      | 1.06        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Hounslow                     | 9              | 75           | 58          | 28.0%    | Good      | 0.78        |
| Gradko   | 20% TEA in water | 2016 | Urban      | Hounslow                     | 9              | 33           | 33          | 0.1%     | Good      | 1.00        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Lisburn and Castlereagh      | 12             | 39           | 26          | 46.4%    | Good      | 0.68        |
| Gradko   | 20% TEA in water | 2016 | Background | Pembrokeshire                | 11             | 4            | 3           | 27.5%    | Good      | 0.78        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Cheltenham                   | 11             | 32           | 32          | -0.9%    | Good      | 1.01        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Lancaster                    | 11             | 33           | 32          | 2.8%     | Good      | 0.97        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Lincoln                      | 11             | 46           | 38          | 20.9%    | Good      | 0.83        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Fareham                      | 12             | 33           | 26          | 27.0%    | Good      | 0.79        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Fareham                      | 12             | 39           | 37          | 5.3%     | Good      | 0.95        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Fareham                      | 9              | 27           | 32          | -16.2%   | Good      | 1.19        |
| Gradko   | 20% TEA in water | 2016 | Roadside   | Nottingham                   | 12             | 34           | 38          | -10.0%   | Poor      | 1.11        |
| Gradko   | 20% TEA in water | 2016 |            | Overall factor (32 studies)  |                |              |             | Use      |           | 0.92        |

| Table 17 Calculation of local bias adjustment facto | Table 17 Ca | alculation of | f local bias | adjustment | factor |
|-----------------------------------------------------|-------------|---------------|--------------|------------|--------|
|-----------------------------------------------------|-------------|---------------|--------------|------------|--------|

| Diffusion tubes                                              |                                                                              |            |                   |                   |                                            | measurements |                  |                |          | Automatic method |         | Data qua  | Data quality check |  |
|--------------------------------------------------------------|------------------------------------------------------------------------------|------------|-------------------|-------------------|--------------------------------------------|--------------|------------------|----------------|----------|------------------|---------|-----------|--------------------|--|
| Period                                                       | Start date                                                                   | End date   | Tube 1            | Tube 2            | Tube 3                                     | Triplicate   | Standard         | Coefficient    | 95% CI   | Period           | Data    | Tubes     | Analyser           |  |
|                                                              |                                                                              |            | µgm <sup>-3</sup> | µgm <sup>-3</sup> | µgm <sup>-3</sup>                          | mean         | deviation        | of variation   | of mean  | mean             | capture | precision | data               |  |
|                                                              |                                                                              |            | 10                | , 0               | , 0                                        |              |                  | (CV)           |          |                  | (% DC)  | check     | capture            |  |
|                                                              |                                                                              |            |                   |                   |                                            |              |                  |                |          |                  |         |           | check              |  |
| 1                                                            | 07/01/2016                                                                   | 03/02/2016 | 37.7              | 36.4              | 36.3                                       | 36.8         | 0.8              | 2              | 2.0      | 38.7             | 100.0   | Good      | Good               |  |
| 2                                                            | 03/02/2016                                                                   | 01/03/2016 | 41.3              | 44.1              | 42.2                                       | 42.5         | 1.4              | 3              | 3.5      | 46.              | 100.0   | Good      | Good               |  |
| 3                                                            | 01/03/2016                                                                   | 30/03/2016 | missing           | 38.3              | missing                                    |              |                  |                |          | 46.4             | 99.9    |           | Good               |  |
| 4                                                            | 30/03/2016                                                                   | 28/04/2016 | 40.9              | 40.8              | 28.2                                       | 36.6         | 7.3              | 20             | 18.1     | 39.7             | 100.0   | Poor      | Good               |  |
| 5                                                            | 28/04/2016                                                                   | 26/05/2016 | 38.0              | 36.6              | 36.9                                       | 37.2         | 0.7              | 2              | 1.8      | 39.0             | 100.0   | Good      | Good               |  |
| 6                                                            | 26/05/2016                                                                   | 30/06/2016 | 38.2              | 38.9              | 37.6                                       | 38.2         | 0.6              | 2              | 1.6      | 38.0             | 94.4    | Good      | Good               |  |
| 7                                                            | 30/06/2016                                                                   | 27/07/2016 | 30.3              | 30.1              | 29.4                                       | 30.0         | 0.5              | 2              | 1.2      | 29.0             | 98.0    | Good      | Good               |  |
| 8                                                            | 27/07/2016                                                                   | 25/08/2016 | 31.4              | 29.4              | 31.3                                       | 30.7         | 1.1              | 4              | 2.8      | 25.0             | 100.0   | Good      | Good               |  |
| 9                                                            | 25/08/2016                                                                   | 29/09/2016 | 36.2              | 37.8              | 35.3                                       | 36.4         | 1.2              | 3              | 3.1      | 31.0             | 100.0   | Good      | Good               |  |
| 10                                                           | 29/09/2016                                                                   | 27/10/2016 | 39.1              | 40.2              | 40.4                                       | 39.9         | 0.7              | 2              | 1.7      | 41.0             | 100.0   | Good      | Good               |  |
| 11                                                           | 27/10/2016                                                                   | 01/12/2016 | 48.1              | 29.5              | 30.0                                       | 35.9         | 10.6             | 30             | 26.3     | 52.4             | 100.0   | Poor      | Good               |  |
| 12                                                           | 01/12/2016                                                                   | 05/01/2017 | 45.4              | 44.7              | 44.9                                       | 45.0         | 0.3              | 1              | 0.9      | 44.9             | 100.0   | Good      | Good               |  |
| It is necessary to have results for at least two tubes in or |                                                                              |            |                   | der to cal        | culate the p                               | recision of  | he measuren      | nents          |          |                  | Good    | Good      |                    |  |
|                                                              |                                                                              |            |                   |                   |                                            |              |                  | Overall        | survey>  | Good             | overall |           |                    |  |
|                                                              |                                                                              |            |                   |                   | -                                          |              |                  |                |          |                  |         | precision | DC                 |  |
| Site Name/ ID: Whitby Road, WH                               |                                                                              |            |                   | Precision         | 9 out of 11                                | periods have | a CV sma         | ller than 20%  | <b>,</b> |                  |         |           |                    |  |
|                                                              |                                                                              |            |                   |                   |                                            |              |                  |                |          |                  |         |           |                    |  |
| Accuracy (with 95% confidence interval)                      |                                                                              |            |                   |                   |                                            | Accuracy (   | with 95% co      | onfidence inte | rval)    |                  |         |           |                    |  |
|                                                              | without periods with CV larger than 20%                                      |            |                   |                   |                                            | With all da  | ta               |                | ivalj    |                  |         |           |                    |  |
|                                                              | Bias calculated using 11 periods of data                                     |            |                   |                   |                                            | Rias calcul  | ated using '     | 11 periods of  | data     |                  |         |           |                    |  |
|                                                              | Bias factor $\Delta$ 0.00 (0.02-1.08)                                        |            |                   |                   |                                            | Bias factor  |                  | 1 04 (0 95-1   | 15)      |                  |         |           |                    |  |
|                                                              | $\begin{array}{cccc} \text{Bias B} & 1\% (-7\% \text{ to } 9\%) \end{array}$ |            |                   |                   | Bias B -4% (-13% to 5%)                    |              |                  |                |          |                  |         |           |                    |  |
|                                                              | Diffusion tubes mean: $27 \text{ ugm}^{-3}$                                  |            |                   |                   | Diffusion tubes mean: $37 \text{ um}^{-3}$ |              |                  |                |          |                  |         |           |                    |  |
|                                                              | Moon CV (provision):                                                         |            |                   |                   | Mean CV (precision):                       |              |                  |                |          |                  |         |           |                    |  |
|                                                              | iviean CV (precision): 2                                                     |            |                   |                   |                                            |              | 0                | -3             |          |                  |         |           |                    |  |
|                                                              | Automatic iviean: 37 µgm <sup>-</sup>                                        |            |                   |                   |                                            | mean:        | 39<br>10 1100 du | µgiii<br>00%   |          |                  |         |           |                    |  |
| Data capture for periods used: 99%                           |                                                                              |            |                   |                   |                                            | re for perio |                  | 99%<br>-3      |          |                  |         |           |                    |  |
|                                                              | Adjusted tube                                                                | es mean:   | 37 (34-40)        | µgm ĭ             |                                            | Adjusted tu  | ubes mean:       | 39 (35-43)     | µgm ĭ    |                  |         |           |                    |  |

## **Appendix D: Maps of monitoring locations**



Figure 1 Location of automatic monitoring station in Chester



Figure 2 Location of automatic monitoring station in Ellesmere Port



Figure 3 Location of automatic monitoring stations in Thornton-le-Moors

Figure 4 Location of automatic monitoring station in Ellesmere Port





Figure 5 Location of automatic monitoring station in Frodsham

Figure 6 Location of automatic monitoring station in Elton





Figure 7 Location of NO2 diffusion tubes in Chester

Figure 8 Location of NO<sub>2</sub> diffusion tubes in Chester





Figure 9 Location of NO<sub>2</sub> diffusion tubes in Chester







Figure 11 Location of NO<sub>2</sub> diffusion tubes in Frodsham

Figure 12 Location of  $NO_2$  diffusion tube, Christleton





Figure 13 Location of NO2 diffusion tube, Rudheath





## Appendix E: Summary of air quality objectives in England

Table 18 Air quality objectives in England

| Dollutont                             | Air quality objective <sup>5</sup>                                      |                |  |  |  |  |  |
|---------------------------------------|-------------------------------------------------------------------------|----------------|--|--|--|--|--|
| Pollutant                             | Concentration                                                           | Measured as    |  |  |  |  |  |
| Nitrogen dioxide                      | 200 μg/m <sup>3</sup> not to be exceeded more than 18 times a year      | one-hour mean  |  |  |  |  |  |
| $(NO_2)$                              | 40 μg/m <sup>3</sup>                                                    | annual mean    |  |  |  |  |  |
| Particulate matter                    | 50 μg/m <sup>3</sup> , not to be exceeded more than 35 times a year     | 24-hour mean   |  |  |  |  |  |
| (r 1v1 <sub>10</sub> )                | 40 μg/m <sup>3</sup>                                                    | annual mean    |  |  |  |  |  |
|                                       | 350 μg/m <sup>3</sup> , not to be exceeded more than 24 times a year    | one-hour mean  |  |  |  |  |  |
| Sulphur dioxide<br>(SO <sub>2</sub> ) | 125 μg/m <sup>3</sup> , not to be exceeded more than three times a year | 24-hour mean   |  |  |  |  |  |
|                                       | 266 µg/m <sup>3</sup> , not to be exceeded more than 35 times a year    | 15-minute mean |  |  |  |  |  |

<sup>&</sup>lt;sup>5</sup> The units are in micrograms of pollutant per cubic metre of air ( $\mu$ g/m<sup>3</sup>).

## **Appendix F: Long-term trends**



Figure 15 Five-year trends of NO2 at real-time sites

Figure 16 Five-year trends of NO<sub>2</sub> at Chester diffusion tubes





Figure 17 Five-year trends of NO2 at Ellesmere Port diffusion tubes

Figure 18 Five-year trends of NO2 at Frodsham diffusion tubes





Figure 19 Five-year trends of PM<sub>10</sub> in Cheshire West

Figure 20 Five-year trends of SO<sub>2</sub> in Cheshire West



## **Appendix G:Inter-site comparisons**

Figure 21 Inter-site hourly NO<sub>2</sub> comparisons 2016 (AQDM Ltd.)



2016 50 <u>Gravimetric PM10 μg m-3 (ambient T&P) Daily Averages</u> Cheshire West Frodsham National Air Quality Standard - Cheshire West Park Road - Liverpool Speke 40 Gravimetric PM10 µg m-3 (ambient T&P) 30 20 10 0 Jan Feb May Dec Mar Jul Sep Oct Nov Apr Jun Aug 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016

Figure 22 Inter-site hourly PM<sub>10</sub> comparisons 2016 (AQDM Ltd.)



#### Figure 23 Inter-site hourly SO<sub>2</sub> comparisons 2016 (AQDM Ltd.)

LAQM Annual Status Report 2017

## **Glossary of terms**

| Abbreviation              | Description                                                                                                                                                                                           |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AQAP                      | Air quality action plan - A detailed description of measures,<br>outcomes, achievement dates and implementation methods,<br>showing how the LA intends to achieve air quality limit values            |
| AQMA                      | Air quality management area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives |
| ASR                       | Annual status report for air quality                                                                                                                                                                  |
| AURN                      | Automatic urban and rural network                                                                                                                                                                     |
| Defra                     | Department for environment, food and rural affairs                                                                                                                                                    |
| CBTF                      | Clean bus technology fund                                                                                                                                                                             |
| CVTF                      | Clean vehicle technology fund                                                                                                                                                                         |
| EU                        | European Union                                                                                                                                                                                        |
| EV                        | Electric vehicle                                                                                                                                                                                      |
| LAQM                      | Local air quality management                                                                                                                                                                          |
| NICE                      | National Institute for Health and Care Excellence                                                                                                                                                     |
| NO <sub>2</sub>           | Nitrogen dioxide                                                                                                                                                                                      |
| NO <sub>x</sub>           | Nitrogen oxides                                                                                                                                                                                       |
| PM <sub>10</sub>          | Airborne particulate matter with a diameter of 10µm<br>(micrometres/microns) or less                                                                                                                  |
| PM <sub>2.5</sub>         | Airborne particulate matter with a diameter of 2.5µm or less                                                                                                                                          |
| QA/QC                     | Quality assurance and quality control                                                                                                                                                                 |
| SO <sub>2</sub>           | Sulphur dioxide                                                                                                                                                                                       |
| TEA                       | Triethanolamine                                                                                                                                                                                       |
| μ <b>g/m</b> <sup>3</sup> | micrograms per cubic metre                                                                                                                                                                            |

#### Accessing Cheshire West and Chester Council information and services

Council information is also available in audio, braille, large print or other formats. If you would like a copy in a different format, in another language or require a BSL interpreter, please email us at: <u>equalities@cheshirewestandchester.gov.uk</u>

Telephone: 0300 123 8 123 Textphone: 18001 01606 275757 Email: equalities@cheshirewestandchester.gov.uk Web: www.cheshirewestandchester.gov.uk